1 Wang J J, Ye F Y. Probing into the interactions between papers and patents of new CRISPR/CAS9 technology: a citation comparison[J]. Journal of Informetrics, 2021, 15(4): 101189. 2 Schwartz H M. Global secular stagnation and the rise of intellectual property monopoly[J]. Review of International Political Economy, 2022, 29(5): 1448-1476. 3 王格格, 刘树林. 国际专利分类号间的知识流动与技术间知识溢出测度——基于中国发明授权专利数据[J]. 情报学报, 2020, 39(11): 1162-1170. 4 Kuhn J M, Teodorescu M H M. The track one pilot program: who benefits from prioritized patent examination?[J]. Strategic Entrepreneurship Journal, 2021, 15(2): 185-208. 5 Feng J, Jaravel X. Crafting intellectual property rights: implications for patent assertion entities, litigation, and innovation[J]. American Economic Journal: Applied Economics, 2020, 12(1): 140-181. 6 刘夏, 黄灿, 余骁锋. 基于机器学习模型的专利质量预测初探[J]. 情报学报, 2019, 38(4): 402-410. 7 Ljungberg D, Bourelos E, McKelvey M. Academic inventors, technological profiles and patent value: an analysis of academic patents owned by swedish-based firms[J]. Industry and Innovation, 2013, 20(5): 473-487. 8 李睿, 赵峰. 届满专利与无效专利的施引特征对比及其情报学意义[J]. 情报学报, 2016, 35(6): 586-596. 9 Hou B J, Zhang Y M, Hong J, et al. New knowledge and regional entrepreneurship: the role of intellectual property protection in China[J]. Knowledge Management Research & Practice, 2021: 1-15. 10 杨思思, 戴磊, 郝屹. 专利经济价值度通用评估方法研究[J]. 情报学报, 2018, 37(1): 52-60. 11 Song X Y, Huang X H, Qing T. Intellectual property rights protection and quality upgrading: evidence from China[J]. Economic Modelling, 2021, 103: 105602. 12 Wu H C, Chen H Y, Lee K Y. Unveiling the core technology structure for companies through patent information[J]. Technological Forecasting and Social Change, 2010, 77(7): 1167-1178. 13 Lai K K, Chen H C, Chang Y H, et al. A structured MPA approach to explore technological core competence, knowledge flow, and technology development through social network patentometrics[J]. Journal of Knowledge Management, 2021, 25(2): 402-432. 14 Trappey A J C, Trappey C V, Wu J L, et al. Intelligent compilation of patent summaries using machine learning and natural language processing techniques[J]. Advanced Engineering Informatics, 2020, 43: 101027. 15 刘大勇, 孟悄然, 段文斌. 科技成果转化对经济新动能培育的影响机制——基于230个城市专利转化的观测与实证分析[J]. 管理科学学报, 2021, 24(7): 49-65. 16 Liu W D, Qiao W B, Wang Y, et al. Patent transformation opportunity to realize patent value: discussion about the conditions to be used or exchanged[J]. Information Processing & Management, 2021, 58(4): 102582. 17 李治东, 熊焰, 方曦. 基于熵权层次分析法的核心专利识别应用研究[J]. 情报学报, 2016, 35(10): 1101-1109. 18 Trappey A J C, Trappey C V, Govindarajan U H, et al. Patent value analysis using deep learning models—the case of IoT technology mining for the manufacturing industry[J]. IEEE Transactions on Engineering Management, 2021, 68(5): 1334-1346. 19 Wang J L, Fan Y, Zhang H, et al. Technology hotspot tracking: topic discovery and evolution of China’s blockchain patents based on a dynamic LDA model[J]. Symmetry, 2021, 13(3): 415. 20 Huang Z X, Xie Z P. A patent keywords extraction method using TextRank model with prior public knowledge[J]. Complex & Intelligent Systems, 2022, 8(1): 1-12. 21 Chung P, Sohn S Y. Early detection of valuable patents using a deep learning model: case of semiconductor industry[J]. Technological Forecasting and Social Change, 2020, 158: 120146. 22 Zhu H M, He C H, Fang Y, et al. Patent automatic classification based on symmetric hierarchical convolution neural network[J]. Symmetry, 2020, 12(2): 186. 23 Wu H Q, Shen G Q, Lin X, et al. A transformer-based deep learning model for recognizing communication-oriented entities from patents of ICT in construction[J]. Automation in Construction, 2021, 125: 103608. 24 Ni X, Samet A, Cavallucci D. Similarity-based approach for inventive design solutions assistance[J]. Journal of Intelligent Manufacturing, 2022, 33(6): 1681-1698. 25 李睿, 周维, 容军凤, 等. 高价值企业专利的被引特征分析——以世界500强企业专利为例[J]. 情报学报, 2015, 34(9): 899-911. 26 Nagler M, Sorg S. The disciplinary effect of post-grant review-causal evidence from European patent opposition[J]. Research Policy, 2020, 49(3): 103915. 27 Jeon D, Ahn J M, Kim J, et al. A doc2vec and local outlier factor approach to measuring the novelty of patents[J]. Technological Forecasting and Social Change, 2022, 174: 121294. 28 陈亮. 面向专利分析的Patent Classification LDA模型[J]. 情报学报, 2016, 35(8): 864-874. 29 专利审查指南[EB/OL]. [2022-07-01]. http://www.cypatent.com/cn/sczn.htm. 30 李雨峰. 论专利公开与排他利益的动态平衡[J]. 知识产权, 2019, 29(9): 3-10. 31 Yu L P, Duan Y L, Fan T T. Innovation performance of new products in China’s high-technology industry[J]. International Journal of Production Economics, 2020, 219: 204-215. 32 Di Gennaro G, Buonanno A, Palmieri F A N. Considerations about learning word2vec[J]. The Journal of Supercomputing, 2021, 77(11): 12320-12335. 33 王玲, 李文昌, 赵梦. 不同类型专利权人的专利失效影响因素研究[J]. 科技管理研究, 2021, 41(19): 149-154. 34 Marco A C, Sarnoff J D, de Grazia C A W. Patent claims and patent scope[J]. Research Policy, 2019, 48(9): 103790. 35 Mossinghoff G J, Kuo V S. Post-grant review of patents: enhancing the quality of the fuel of interest[J]. Idea, 2003, 43: 83. 36 Rai A K. Improving (software) patent quality through the administrative process[J]. Houston Law Review, 2013, 51(2): 503-543. 37 Novelli E. An examination of the antecedents and implications of patent scope[J]. Research Policy, 2015, 44(2): 493-507. 38 Kim Y K, Park S T. Patent litigation research trends and trend analysis[J]. Journal of Computational and Theoretical Nanoscience, 2021, 18(5): 1485-1489. 39 U.S. Patent and Trademark Office, U.S. Department of Commerce. Patent litigation and USPTO trials: implications for patent examination quality[R]. Alexandria: United States Patent and Trademark Office, 2015. 40 Sun F, Liu J, Wu J, et al. BERT4Rec: sequential recommendation with bidirectional encoder representations from transformer[C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM Press, 2019: 1441-1450. 41 Wan C X, Li B. Financial causal sentence recognition based on BERT-CNN text classification[J]. The Journal of Supercomputing, 2022, 78(5): 6503-6527. 42 Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2017: 6000-6010. 43 Sherstinsky A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network[J]. Physica D: Nonlinear Phenomena, 2020, 404: 132306. 44 Nguyen H D, Tran K P, Thomassey S, et al. Forecasting and anomaly detection approaches using LSTM and LSTM autoencoder techniques with the applications in supply chain management[J]. International Journal of Information Management, 2021, 57: 102282. 45 Patil A, Viquerat J, Larcher A, et al. Robust deep learning for emulating turbulent viscosities[J]. Physics of Fluids, 2021, 33(10): 105118. 46 Zaki G, Gudla P R, Lee K, et al. A deep learning pipeline for nucleus segmentation[J]. Cytometry Part A, 2020, 97(12): 1248-1264. 47 Wang X, Wang K, Lian S G. A survey on face data augmentation for the training of deep neural networks[J]. Neural Computing and Applications, 2020, 32(19): 15503-15531. 48 Moon T, Son J E. Knowledge transfer for adapting pre-trained deep neural models to predict different greenhouse environments based on a low quantity of data[J]. Computers and Electronics in Agriculture, 2021, 185: 106136. 49 Veugelers R, Wang J. Scientific novelty and technological impact[J]. Research Policy, 2019, 48(6): 1362-1372. 50 国家知识产权局. 国内专利授权年度状况(2019年)[R/OL]// 2019知识产权统计年报. [2022-07-01]. https://www.cnipa.gov.cn/tjxx/jianbao/year2019/b/b2.html. 51 Zimmer L, Lindauer M, Hutter F. Auto-pytorch: multi-fidelity MetaLearning for efficient and robust AutoDL[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(9): 3079-3090. 52 Paszke A, Gross S, Massa F, et al. PyTorch: an imperative style, high-performance deep learning library[C]// Proceedings of the 32nd Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2020: 7994-8005.