1 Bower J L, Christensen C M. Disruptive technologies: catching the wave[J]. Harvard Business Review, 1995, 73(1): 43-53. 2 苏成, 赵志耘, 赵筱媛, 等. 颠覆性技术新阐释: 概念、内涵及特征[J]. 情报学报, 2021, 40(12): 1253-1262. 3 Kostoff R N, Boylan R, Simons G R. Disruptive technology roadmaps[J]. Technological Forecasting and Social Change, 2004, 71(1/2): 141-159. 4 李乾瑞, 郭俊芳, 黄颖, 等. 基于突变-融合视角的颠覆性技术主题演化研究[J]. 科学学研究, 2021, 39(12): 2129-2139. 5 Momeni A, Rost K. Identification and monitoring of possible disruptive technologies by patent-development paths and topic modeling[J]. Technological Forecasting and Social Change, 2016, 104: 16-29. 6 赵志耘, 潘云涛, 苏成, 等. 颠覆性技术感知响应系统框架研究[J]. 情报学报, 2021, 40(12): 1245-1252. 7 Capponi G, Martinelli A, Nuvolari A. Breakthrough innovations and where to find them[J]. Research Policy, 2022, 51(1): 104376. 8 Funk R J, Owen-Smith J. A dynamic network measure of technological change[J]. Management Science, 2017, 63(3): 791-817. 9 李乾瑞, 郭俊芳, 黄颖, 等. 基于专利计量的颠覆性技术识别方法研究[J]. 科学学研究, 2021, 39(7): 1166-1175. 10 黄鲁成, 成雨, 吴菲菲, 等. 关于颠覆性技术识别框架的探索[J]. 科学学研究, 2015, 33(5): 654-664. 11 White G R T. Future applications of blockchain in business and management: a Delphi study[J]. Strategic Change, 2017, 26(5): 439-451. 12 李晓龙, 鲁平, 李存斌. 基于Delphi和DEMATEL法影响国网的颠覆性创新技术影响因素综合排序分析[J]. 科技管理研究, 2017, 37(6): 127-133. 13 刘志辉, 张均胜, 林毅, 等. 基于隐性知识的潜在颠覆性技术评估方法研究[J]. 情报学报, 2021, 40(12): 1271-1278. 14 Phaal R, Farrukh C J P, Probert D R. Technology roadmapping—a planning framework for evolution and revolution[J]. Technological Forecasting and Social Change, 2004, 71(1/2): 5-26. 15 Vojak B A, Chambers F A. Roadmapping disruptive technical threats and opportunities in complex, technology-based subsystems: the SAILS methodology[J]. Technological Forecasting and Social Change, 2004, 71(1/2): 121-139. 16 张金柱, 王秋月, 仇蒙蒙. 颠覆性技术识别研究进展综述[J]. 数据分析与知识发现, 2022, 6(7): 12-31. 17 Rafii F, Kampas P J. How to identify your enemies before they destroy you[J]. Harvard Business Review, 2002, 80(11): 115-123, 134. 18 Nagy D, Schuessler J, Dubinsky A. Defining and identifying disruptive innovations[J]. Industrial Marketing Management, 2016, 57: 119-126. 19 苏敬勤, 刘建华, 王智琦, 等. 颠覆性技术的演化轨迹及早期识别——以智能手机等技术为例[J]. 科研管理, 2016, 37(3): 13-20. 20 周洋, 张庆普. 高端颠覆性创新的技术演进轨迹和市场扩散路径[J]. 研究与发展管理, 2017, 29(6): 99-108. 21 王康, 陈悦, 王玉奇, 等. 基于专利引用变化的颠覆性技术识别研究[J]. 情报杂志, 2022, 41(1): 74-80, 169. 22 程如烟, 孙浩林. 主要经济体支持颠覆性技术创新的政策措施研究[J]. 情报学报, 2021, 40(12): 1263-1270. 23 曹晓阳, 魏永静, 李莉, 等. DARPA的颠覆性技术创新及其启示[J]. 中国工程科学, 2018, 20(6): 122-128. 24 石慧, 潘云涛, 苏成. 颠覆性技术及其识别预测方法研究综述[J]. 情报工程, 2019, 5(3): 33-48. 25 Schoenmakers W, Duysters G. The technological origins of radical inventions[J]. Research Policy, 2010, 39(8): 1051-1059. 26 王康, 陈悦. 技术融合视角下基于专利的颠覆性技术识别研究[J]. 情报杂志, 2022, 41(4): 29-36, 134. 27 Narin F, Hamilton K S, Olivastro D. The increasing linkage between U.S. technology and public science[J]. Research Policy, 1997, 26(3): 317-330. 28 Huang M H, Yang H W, Chen D Z. Increasing science and technology linkage in fuel cells: a cross citation analysis of papers and patents[J]. Journal of Informetrics, 2015, 9(2): 237-249. 29 刘自强, 许海云, 罗瑞, 等. 基于主题关联分析的科技互动模式识别方法研究[J]. 情报学报, 2019, 38(10): 997-1011. 30 Ba Z C, Liang Z T. A novel approach to measuring science-technology linkage: from the perspective of knowledge network coupling[J]. Journal of Informetrics, 2021, 15(3): 101167. 31 Harhoff D, Scherer F M, Vopel K. Citations, family size, opposition and the value of patent rights[J]. Research Policy, 2003, 32(8): 1343-1363. 32 Ahmadpoor M, Jones B F. The dual frontier: patented inventions and prior scientific advance[J]. Science, 2017, 357(6351): 583-587. 33 Wu L F, Wang D S, Evans J A. Large teams develop and small teams disrupt science and technology[J]. Nature, 2019, 566(7744): 378-382. 34 Bornmann L, Tekles A. Convergent validity of several indicators measuring disruptiveness with milestone assignments to physics papers by experts[J]. Journal of Informetrics, 2021, 15(3): 101159. 35 Bornmann L, Devarakonda S, Tekles A, et al. Are disruption index indicators convergently valid? The comparison of several indicator variants with assessments by peers[J]. Quantitative Science Studies, 2020, 1(3): 1242-1259. 36 刘小慧, 廖宇, 朱曼曼. 颠覆性指数用于科研评价初探[J]. 情报理论与实践, 2021, 44(12): 34-40. 37 罗素平, 寇翠翠, 金金, 等. 基于离群专利的颠覆性技术预测——以中药专利为例[J]. 情报理论与实践, 2019, 42(7): 165-170. 38 孔德婧, 董放, 陈子婧, 等. 离群专利视角下的新兴技术预测——基于BERT模型和深度神经网络[J]. 图书情报工作, 2021, 65(17): 131-141. 39 Marx M, Fuegi A. Reliance on science: worldwide front-page patent citations to scientific articles[J]. Strategic Management Journal, 2020, 41(9): 1572-1594. 40 Bessen J. The value of U.S. patents by owner and patent characteristics[J]. Research Policy, 2008, 37(5): 932-945. 41 Kayal A A, Waters R C. An empirical evaluation of the technology cycle time indicator as a measure of the pace of technological progress in superconductor technology[J]. IEEE Transactions on Engineering Management, 1999, 46(2): 127-131. 42 Marco A C, Sarnoff J D, DeGrazia C A W. Patent claims and patent scope[J]. Research Policy, 2019, 48(9): 103790. 43 张静, 杨冠灿, 刘会景. 全球专利统计数据库(PATSTAT)研究述评[J]. 数字图书馆论坛, 2015(12): 62-68. 44 Sinha A, Shen Z, Song Y, et al. An overview of Microsoft academic service (mas) and applications[C]// Proceedings of the 24th International Conference on World Wide Web. 2015: 243-246. New York: ACM Press, 2015: 243-246. 责任编辑 魏瑞斌)