吴雪华, 毛进, 陈思菁, 谢豪, 李纲. 突发事件应急行动支撑信息的自动识别与分类研究[J]. 情报学报, 2021, 40(8): 817-830.
Wu Xuehua, Mao Jin, Chen Sijing, Xie Hao, Li Gang. Research on Automatic Identification and Classification of Actionable Information in Emergencies. 情报学报, 2021, 40(8): 817-830.
1 蒋勋, 苏新宁, 刘喜文. 突发事件驱动的应急决策知识库结构研究[J]. 情报资料工作, 2015(1): 25-29. 2 Sakaki T, Okazaki M, Matsuo Y. Earthquake shakes Twitter users: real-time event detection by social sensors[C]// Proceedings of the 19th International Conference on World Wide Web. New York: ACM Press, 2010: 851-860. 3 Imran M, Castillo C, Diaz F, et al. Processing social media messages in mass emergency: a survey[J]. ACM Computing Surveys, 2015, 47(4): 1-38. 4 Vieweg S, Hughes A L, Starbird K, et al. Microblogging during two natural hazards events: what twitter may contribute to situational awareness[C]// Proceedings of the 28th International Conference on Human Factors in Computing Systems. New York: ACM Press, 2010: 1079-1088. 5 Zade H, Shah K, Rangarajan V, et al. From situational awareness to actionability: towards improving the utility of social media data for crisis response[J]. Proceedings of the ACM on Human-Computer Interaction, 2018, 2(CSCW): Article No. 195. 6 Imran M, Castillo C, Diaz F, et al. Processing social media messages in mass emergency: survey summary[C]// Companion Proceedings of the Web Conference 2018. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2018: 507-511. 7 Kropczynski J, Grace R, Coche J, et al. Identifying actionable information on social media for emergency dispatch[C]// Proceedings of the 2018 International Conference on Information Systems for Crisis Response and Management Asia Pacific. Auckland: Massey University, 2018: 428-438. 8 Dailey D, Starbird K. Addressing the information needs of crisis-affected communities: the interplay of legacy media and social media in a rural disaster[M]// The Communication Crisis in America, and How to Fix It. New York: Palgrave Macmillan, 2016: 285-303. 9 Purohit H, Castillo C, Diaz F, et al. Emergency-relief coordination on social media: automatically matching resource requests and offers[J/OL]. First Monday, 2013, 19(1). https://doi.org/10.5210/fm.v19i1.4848. 10 Sit M A, Koylu C, Demir I. Identifying disaster-related tweets and their semantic, spatial and temporal context using deep learning, natural language processing and spatial analysis: a case study of Hurricane Irma[J]. International Journal of Digital Earth, 2019, 12(11): 1205-1229. 11 仇培元, 陆锋, 张恒才, 等. 蕴含地理事件微博客消息的自动识别方法[J]. 地球信息科学学报, 2016, 18(7): 886-893. 12 Imran M, Elbassuoni S, Castillo C, et al. Extracting information nuggets from disaster-related messages in social media[C]// Proceedings of the 10th International Conference on Information Systems for Crisis Response and Management. ISCRAM Association, 2013. 13 李纲, 陈思菁, 毛进, 等. 自然灾害事件微博热点话题的时空对比分析[J]. 数据分析与知识发现, 2019, 3(11): 1-15. 14 Rudra K, Ganguly N, Goyal P, et al. Extracting and summarizing situational information from the Twitter social media during disasters[J]. ACM Transactions on the Web, 2018, 12(3): 1-35. 15 Munro R. Subword and spatiotemporal models for identifying actionable information in Haitian Kreyol[C]// Proceedings of the Fifteenth Conference on Computational Natural Language Learning. Stroudsburg: Association for Computational Linguistics, 2011: 68-77. 16 Baweja S, Aggarwal A, Goyal V, et al. Automatic retrieval of actionable information from disaster-related microblogs[J]. CEUR Workshop Proceedings, 2017, 2036: 43-45. 17 Kiatpanont R, Tanlamai U, Chongstitvatana P. Extraction of actionable information from crowdsourced disaster data[J]. Journal of Emergency Management, 2016, 14(6): 377-390. 18 Nguyen M T, Kitamoto A, Nguyen T T. TSum4act: a framework for retrieving and summarizing actionable tweets during a disaster for reaction[C]// Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining. Cham: Springer, 2015: 64-75. 19 Ghosh S, Srijith P K, Desarkar M S. Using social media for classifying actionable insights in disaster scenario[J]. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2017, 9(4): 224-237. 20 Zahra K, Imran M, Ostermann F O. Automatic identification of eyewitness messages on twitter during disasters[J]. Information Processing & Management, 2020, 57(1): 102107. 21 夏华林, 张仰森. 基于规则与统计的Web突发事件新闻多层次分类[J]. 计算机应用, 2012, 32(2): 392-394, 415. 22 Ao J, Zhang P, Cao Y N. Estimating the locations of emergency events from Twitter streams[J]. Procedia Computer Science, 2014, 31: 731-739. 23 Habdank M, Rodehutskors N, Koch R. Relevancy assessment of tweets using supervised learning techniques: mining emergency related tweets for automated relevancy classification[C]// Proceedings of the 4th International Conference on Information and Communication Technologies for Disaster Management. New York: IEEE, 2017: 1-8. 24 Kaufhold M A, Bayer M, Reuter C. Rapid relevance classification of social media posts in disasters and emergencies: a system and evaluation featuring active, incremental and online learning[J]. Information Processing & Management, 2020, 57(1): 102132. 25 Pohl D, Bouchachia A, Hellwagner H. Batch-based active learning: application to social media data for crisis management[J]. Expert Systems with Applications, 2018, 93: 232-244. 26 Huang Q Y, Xiao Y. Geographic situational awareness: mining tweets for disaster preparedness, emergency response, impact, and recovery[J]. ISPRS International Journal of Geo-Information, 2015, 4(3): 1549-1568. 27 王艳东, 李昊, 王腾, 等. 基于社交媒体的突发事件应急信息挖掘与分析[J]. 武汉大学学报?信息科学版, 2016, 41(3): 290-297. 28 Kozlowski D, Lannelongue E, Saudemont F, et al. A three-level classification of French tweets in ecological crises[J]. Information Processing & Management, 2020, 57(5): 102284. 29 刘淑涵, 王艳东, 付小康. 利用卷积神经网络提取微博中的暴雨灾害信息[J]. 地球信息科学学报, 2019, 21(7): 1009-1017. 30 Yu M Z, Huang Q Y, Qin H, et al. Deep learning for real-time social media text classification for situation awareness-using Hurricanes Sandy, Harvey, and Irma as case studies[J]. International Journal of Digital Earth, 2019, 12(11): 1230-1247. 31 Zahera H M, Elgendy I, Jalota R, et al. Fine-tuned BERT model for multi-label tweets classification[C/OL]// Proceedings of the Twenty-Eighth Text REtrieval Conference, 2019. https://trec.nist.gov/pubs/trec28/papers/DICE_UPB.IS.pdf. 32 European Network and Security Agency. Actionable information for security incident response[EB/OL]. [2020-03-16]. https://www.enisa.europa.eu/topics/csirt-cert-services/reactive-services/copy_of_actionable-information. 33 Spasojevic N, Rao A. Identifying actionable messages on social media[C]// Proceedings of the 2015 IEEE International Conference on Big Data. New York: IEEE, 2015: 2273-2281. 34 Cao L B, Zhang C Q. The evolution of KDD: towards domain-driven data mining[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2007, 21(4): 677-692. 35 Garg H, Bansal C, Kaushal R, et al. Identifying actionable information from social media for better government-public relationship[C]// Proceedings of the 10th International Conference on Developments in eSystems Engineering. New York: IEEE, 2017: 206-211. 36 Tyshchuk Y, Wallace W A. Actionable information during extreme events—case study: warnings and 2011 Tohoku earthquake[C]// Proceedings of the 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Conference on Social Computing. New York: IEEE, 2012: 338-347. 37 Gerwin L E. The challenge of providing the public with actionable information during a pandemic[J]. The Journal of Law, Medicine & Ethics, 2012, 40(3): 630-654. 38 Pennington J, Socher R, Manning C D. GloVe: global vectors for word representation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2014: 1532-1543. 39 Devlin J, Chang M W, Lee K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2019, 1: 4171-4186. 40 Olteanu A, Vieweg S, Castillo C. What to expect when the unexpected happens: social media communications across crises[C]// Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing. New York: ACM Press, 2015: 994-1009. 41 Imran M, Mitra P, Castillo C. Twitter as a lifeline: human-annotated Twitter corpora for NLP of crisis-related messages[C]// Proceedings of the Tenth International Conference on Language Resources and Evaluation. Paris: European Language Resources Association, 2016: 1638-1643. 42 Landis J R, Koch G G. The measurement of observer agreement for categorical data[J]. Biometrics, 1977, 33(1): 159-174. 43 Wu Y H, Schuster M, Chen Z F, et al. Google's neural machine translation system: bridging the gap between human and machine translation[OL]. (2016-10-08). https://arxiv.org/pdf/1609.08144v2. pdf. 44 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 40-41. 45 Nadeau C, Bengio Y. Inference for the generalization error[J]. Machine Learning, 2003, 52(3): 239-281. 46 Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1995, 57(1): 289-300. 47 Tausczik Y R, Pennebaker J W. The psychological meaning of words: LIWC and computerized text analysis methods[J]. Journal of Language and Social Psychology, 2010, 29(1): 24-54. 48 Dutt R, Basu M, Ghosh K, et al. Utilizing microblogs for assisting post-disaster relief operations via matching resource needs and availabilities[J]. Information Processing & Management, 2019, 56(5): 1680-1697.