Wu Shiyuan1, Dong Qingxing2,3, Song Zhijun1, Zhang Bin4
1.School of Information Management, Central China Normal University, Wuhan 430079 2.School of Journalism and Communication, Wuhan University, Wuhan 430072 3.Big Data Institute, Wuhan University, Wuhan 430072 4.School of Information Management, Nanjing University, Nanjing 210023
1 陈燕方, 李志宇, 梁循, 等. 在线社会网络谣言检测综述[J]. 计算机学报, 2018, 41(7): 1648-1677. 2 邸子桓, 吕明臣. 信息生态视域下网络语言信息传播机制研究[J]. 情报科学, 2021, 39(1): 28-34. 3 位志广, 宋小康, 朱庆华, 等. 基于随机森林的健康谣言分享意愿研究[J]. 现代情报, 2020, 40(5): 78-87. 4 江成, 刘室辰. 谣言网络多级传播路径下关键引爆点识别模型和算法研究[J]. 情报杂志, 2020, 39(6): 152-158. 5 李悦晨, 钱玲飞, 马静. 基于BERT-RCNN模型的微博谣言早期检测研究[J]. 情报理论与实践, 2021, 44(7): 173-177, 151. 6 王晰巍, 张柳, 黄博, 等. 基于区块链的网络谣言甄别模型及仿真研究[J]. 情报学报, 2021, 40(2): 194-203. 7 Wu L, Morstatter F, Hu X, et al. Mining misinformation in social media[M]// Big Data in Complex and Social Networks. London: Chapman and Hall/CRC, 2016: 123-152. 8 滕婕, 夏志杰, 罗梦莹, 等. 基于Multi-Agent的网络谣言传播事件中信息主体信任识别研究[J]. 情报杂志, 2020, 39(3): 105-114. 9 Guo B, Ding Y S, Yao L N, et al. The future of misinformation detection: new perspectives and trends[OL]. (2019-09-09). https://arxiv.org/pdf/1909.03654.pdf. 10 Shu K, Bhattacharjee A, Alatawi F, et al. Combating disinformation in a social media age[J]. WIREs Data Mining and Knowledge Discovery, 2020, 10(6): e1385. 11 Araujo R F, de Oliveira T M. Disinformation about hydroxychlorochine on Twitter: from political pressure to scientific dispute[J]. AtoZ, Novas Práticas em Informa??o e Conhecimento, 2020, 9(2): 196-205. 12 Furnival A C M, Santos T. Disinformation and fake news: development, detection and ways of fighting it[J]. Conex?o: Comunica??o e Cultura, 2019, 18(36): 94-113. 13 Galitsky B. Detecting rumor and disinformation by web mining[C]// Proceedings of the 2015 AAAI Spring Symposium Series. Palo Alto: AAAI Press, 2015. 14 Sharma K, Qian F, Jiang H, et al. Combating fake news: a survey on identification and mitigation techniques[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(3): Article No.21. 15 Fallis D. A functional analysis of disinformation[C]// iConference 2014 Proceedings. iSchools, 2014: 621-627. 16 Krause N M, Freiling I, Beets B, et al. Fact-checking as risk communication: the multi-layered risk of misinformation in times of COVID-19[J]. Journal of Risk Research, 2020, 23(7/8): 1052-1059. 17 Su Q, Wan M Y, Liu X Q, et al. Motivations, methods and metrics of misinformation detection: an NLP perspective[J]. Natural Language Processing Research, 2020, 1(1/2): 1-13. 18 Barua Z, Barua S, Aktar S, et al. Effects of misinformation on COVID-19 individual responses and recommendations for resilience of disastrous consequences of misinformation[J]. Progress in Disaster Science, 2020, 8: 100119. 19 Sharma K, Seo S, Meng C Z, et al. Coronavirus on social media: analyzing misinformation in Twitter conversations[OL]. (2020-03-26). https://arxiv.org/pdf/2003.12309v1.pdf. 20 Wu L, Morstatter F, Carley K M, et al. Misinformation in social media: definition, manipulation, and detection[J]. ACM SIGKDD Explorations Newsletter, 2019, 21(2): 80-90. 21 Davenport T H, Prusak L. Information ecology: mastering the information and knowledge environment[M]. New York: Oxford University Press, 1997. 22 曹海军, 侯甜甜. 信息生态视角下政务短视频的内生逻辑与优化路径[J]. 情报杂志, 2021, 40(2): 189-194. 23 娄策群, 周承聪. 信息生态链: 概念、本质和类型[J]. 图书情报工作, 2007, 51(9): 29-32. 24 靖继鹏. 信息生态理论研究发展前瞻[J]. 图书情报工作, 2009, 53(4): 5-7. 25 陈曙. 信息生态研究[J]. 图书与情报, 1996(2): 12-19. 26 Zhang X C, Ghorbani A A. An overview of online fake news: Characterization, detection, and discussion[J]. Information Processing & Management, 2020, 57(2): 102025. 27 Ahn Y C, Jeong C S. Natural language contents evaluation system for detecting fake news using deep learning[C]// Proceedings of the 2019 16th International Joint Conference on Computer Science and Software Engineering. IEEE, 2019: 289-292. 28 Devitt A, Ahmad K. Sentiment polarity identification in financial news: a cohesion-based approach[C]// Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics. Association for Computational Linguistics, 2007: 984-991. 29 Castillo C, Mendoza M, Poblete B. Information credibility on Twitter[C]// Proceedings of the 20th International Conference on World Wide Web. New York: ACM Press, 2011: 675-684. 30 Castillo C, Mendoza M, Poblete B. Predicting information credibility in time-sensitive social media[J]. Internet Research, 2013, 23(5): 560-588. 31 Kwon S, Cha M, Jung K, et al. Prominent features of rumor propagation in online social media[C]// Proceedings of the 2013 IEEE 13th International Conference on Data Mining. IEEE, 2013: 1103-1108. 32 Granik M, Mesyura V. Fake news detection using naive Bayes classifier[C]// Proceedings of the 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering. IEEE, 2017: 900-903. 33 Rubin V L, Conroy N J, Chen Y M. Towards news verification: deception detection methods for news discourse[C]// Proceedings of the Hawaii International Conference on System Sciences, 2015. 34 Rashkin H, Choi E, Jang J Y, et al. Truth of varying shades: analyzing language in fake news and political fact-checking[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2017: 2931-2937. 35 Ahmed H, Traore I, Saad S. Detection of online fake news using N-gram analysis and machine learning techniques[C]// Proceedings of the International Conference on Intelligent, Secure, and Dependable Systems in Distributed and Cloud Environments. Cham: Springer, 2017: 127-138. 36 Rajdev M, Lee K. Fake and spam messages: detecting misinformation during natural disasters on social media[C]// Proceedings of the 2015 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology. IEEE, 2015: 17-20. 37 Ciampaglia G L, Shiralkar P, Rocha L M, et al. Computational fact checking from knowledge networks[J]. PLoS One, 2015, 10(6): e0128193. 38 Shi B X, Weninger T. Fact checking in heterogeneous information networks[C]// Proceedings of the 25th International Conference Companion on World Wide Web. International World Wide Web. Republic and Canton of Geneva: Conferences Steering Committee, 2016: 101-102. 39 Guacho G B, Abdali S, Shah N, et al. Semi-supervised content-based detection of misinformation via tensor embeddings[C]// Proceedings of the 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. IEEE, 2018: 322-325. 40 Ma J, Gao W, Mitra P, et al. Detecting rumors from microblogs with recurrent neural networks[C]// Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2016: 3818-3824. 41 楼靓. 社交网络虚假新闻识别方法[J]. 浙江交通职业技术学院学报, 2020, 21(2): 106-110. 42 Kumar S, Mahanti P, Wang S J. Intelligent computational techniques for multimodal data[J]. Multimedia Tools and Applications, 2019, 78(17): 23809-23814. 43 Qi P, Cao J, Yang T Y, et al. Exploiting multi-domain visual information for fake news detection[C]// Proceedings of the 2019 IEEE International Conference on Data Mining. IEEE, 2019: 518-527. 44 R?ssler A, Cozzolino D, Verdoliva L, et al. FaceForensics++: learning to detect manipulated facial images[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. IEEE, 2019: 1-11. 45 Sabir E, Cheng J X, Jaiswal A, et al. Recurrent convolutional strategies for face manipulation detection in videos[C]// Proceedings of the Workshop on Applications of Computer Vision and Pattern Recognition to Media Forensics at CVPR 2019, 2019: 80-87. 46 Singhal S, Shah R R, Chakraborty T, et al. SpotFake: a multi-modal framework for fake news detection[C]// Proceedings of the 2019 IEEE Fifth International Conference on Multimedia Big Data. IEEE, 2019: 39-47. 47 Jin Z W, Cao J, Guo H, et al. Multimodal fusion with recurrent neural networks for rumor detection on microblogs[C]// Proceedings of the 25th ACM International Conference on Multimedia. New York: ACM Press, 2017: 795-816. 48 张国标, 李洁. 融合多模态内容语义一致性的社交媒体虚假新闻检测[J]. 数据分析与知识发现, 2021, 5(5): 21-29. 49 刘金硕, 冯阔, Z. PanJeff, 等. MSRD: 多模态网络谣言检测方法[J]. 计算机研究与发展, 2020, 57(11): 2328-2336. 50 Wang Y Q, Ma F L, Jin Z W, et al. EANN: event adversarial neural networks for multi-modal fake news detection[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM Press, 2018: 849-857. 51 Khattar D, Goud J S, Gupta M, et al. MVAE: multimodal variational autoencoder for fake news detection[C]// Proceedings of the World Wide Web Conference. New York: ACM Press, 2019: 2915-2921. 52 Jiang Y, Liu Y J, Yang Y L. LanguageTool based university rumor detection on Sina Weibo[C]// Proceedings of the 2017 IEEE International Conference on Big Data and Smart Computing. IEEE, 2017: 453-454. 53 Yang Q H, Sangalang A, Rooney M, et al. How is marijuana vaping portrayed on YouTube? Content, features, popularity and retransmission of vaping marijuana YouTube videos[J]. Journal of Health Communication, 2018, 23(4): 360-369. 54 张少钦, 杜圣东, 张晓博, 等. 融合多模态信息的社交网络谣言检测方法[J]. 计算机科学, 2021, 48(5): 117-123. 55 Shu K, Sliva A, Wang S H, et al. Fake news detection on social media[J]. ACM SIGKDD Explorations Newsletter, 2017, 19(1): 22-36. 56 Shu K, Wang S H, Liu H. Understanding user profiles on social media for fake news detection[C]// Proceedings of the 2018 IEEE Conference on Multimedia Information Processing and Retrieval. IEEE, 2018: 430-435. 57 Yang F, Liu Y, Yu X H, et al. Automatic detection of rumor on Sina Weibo[C]// Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics. New York: ACM Press, 2012: Article No.13. 58 Wang W Y. “Liar, liar pants on fire”: a new benchmark dataset for fake news detection[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2017: 422-426. 59 Long Y F, Lu Q, Xiang R, et al. Fake news detection through multi-perspective speaker profiles[C]// Proceedings of the Eighth International Joint Conference on Natural Language Processing. Asian Federation of Natural Language Processing, 2017: 252-256. 60 Liang G, He W B, Xu C, et al. Rumor identification in microblogging systems based on users' behavior[J]. IEEE Transactions on Computational Social Systems, 2015, 2(3): 99-108. 61 Yang S, Shu K, Wang S H, et al. Unsupervised fake news detection on social media: a generative approach[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 5644-5651. 62 Zhang Q, Zhang S Y, Dong J, et al. Automatic detection of rumor on social network[C]// Proceedings of the CCF International Conference on Natural Language Processing and Chinese Computing. Cham: Springer, 2015: 113-122. 63 吴树芳, 徐建民. 基于HITS算法的微博用户可信度评估[J]. 山东大学学报(工学版), 2016, 46(5): 7-12. 64 Shu K, Wang S H, Liu H. Exploiting tri-relationship for fake news detection[OL]. (2017-12-20). https://arxiv.org/pdf/1712.077 09v1.pdf. 65 Xu Y C, Wang C, Dan Z P, et al. Deep recurrent neural network and data filtering for rumor detection on sina weibo[J]. Symmetry, 2019, 11(11): 1408. 66 柳先觉, 徐义春, 董方敏. 结合文本及用户资料数据的微博谣言检测[J]. 信息通信, 2020, 33(12): 39-43. 67 尹鹏博, 潘伟民, 彭成, 等. 基于用户特征分析的微博谣言早期检测研究[J]. 情报杂志, 2020, 39(7): 81-86. 68 Duki? D, Ke?a D, Stipi? D. Are you human? Detecting bots on twitter using BERT[C]// Proceedings of the 2020 IEEE 7th International Conference on Data Science and Advanced Analytics. IEEE, 2020: 631-636. 69 Ratkiewicz J, Conover M, Meiss M, et al. Detecting and tracking political abuse in social media[J]. Proceedings of the International AAAI Conference on Web and Social Media, 2011, 5(1): 297-304. 70 Lee S, Kim J. Early filtering of ephemeral malicious accounts on Twitter[J]. Computer Communications, 2014, 54: 48-57. 71 Khaund T, Al-Khateeb S, Tokdemir S, et al. Analyzing social bots and their coordination during natural disasters[C]// Proceedings of the International Conference on Social Computing, Behavioral-Cultural Modeling and Prediction and Behavior Representation in Modeling and Simulation. Cham: Springer, 2018: 207-212. 72 Wang G, Mohanlal M, Wilson C, et al. Social Turing tests: crowdsourcing sybil detection[C]// Proceedings of the 20th Annual Network Distributed System Security Symposium, 2013. 73 Wu L, Li J D, Hu X, et al. Gleaning wisdom from the past: early detection of emerging rumors in social media[C]// Proceedings of the 17th SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics Publications, 2017: 99-107. 74 Cai G Y, Wu H, Lv R. Rumors detection in Chinese via crowd responses[C]// Proceedings of the 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. IEEE, 2014: 912-917. 75 杨文太, 梁刚, 谢凯, 等. 基于突发话题和领域专家的微博谣言检测方法[J]. 计算机应用, 2017, 37(10): 2799-2805. 76 Qian F, Gong C Y, Sharma K, et al. Neural user response generator: fake news detection with collective user intelligence[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 3834-3840. 77 Watts D J, Peretti J, Frumin M. Viral marketing for the real world[M]. Boston: Harvard Business School Publication, 2007. 78 Ma J, Gao W, Wong K F. Detect rumors in microblog posts using propagation structure via kernel learning[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2017: 708-717. 79 Wu K, Yang S, Zhu K Q. False rumors detection on Sina Weibo by propagation structures[C]// Proceedings of the 2015 IEEE 31st International Conference on Data Engineering. IEEE, 2015: 651-662. 80 Ji F, Tay W P. Identifying rumor sources with different start times[C]// Proceedings of the 2016 IEEE Statistical Signal Processing Workshop. IEEE, 2016: 1-5. 81 Kotteti C M M, Dong X S, Qian L J. Rumor detection on time-series of tweets via deep learning[C]// Proceedings of the 2019 IEEE Military Communications Conference. IEEE, 2019: 1-7. 82 Gao H Y, Mao J H, Zhou J, et al. Are you talking to a machine? Dataset and methods for multilingual image question answering[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015: 2296-2304. 83 Jin Z W, Cao J, Jiang Y G, et al. News credibility evaluation on microblog with a hierarchical propagation model[C]// Proceedings of the 2014 IEEE International Conference on Data Mining. IEEE, 2014: 230-239. 84 任文静, 秦兵, 刘挺. 基于时间序列网络的谣言检测研究[J]. 智能计算机与应用, 2019, 9(3): 300-303. 85 Ma J, Gao W, Wei Z Y, et al. Detect rumors using time series of social context information on microblogging websites[C]// Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. New York: ACM Press, 2015: 1751-1754. 86 毛二松, 陈刚, 刘欣, 等. 基于深层特征和集成分类器的微博谣言检测研究[J]. 计算机应用研究, 2016, 33(11): 3369-3373. 87 何韩森, 孙国梓. 基于特征聚合的假新闻内容检测模型[J]. 计算机应用, 2020, 40(8): 2189-2193. 88 刘勘, 杜好宸. 基于深度迁移网络的Twitter谣言检测研究[J]. 数据分析与知识发现, 2019, 3(10): 47-55. 89 贾硕, 张宁, 沈洪洲. 网络谣言传播与消解的研究进展[J]. 信息资源管理学报, 2019, 9(3): 62-72. 90 Zanette D H. Critical behavior of propagation on small-world networks[J]. Physical Review E, 2001, 64(5): 050901. 91 Nekovee M, Moreno Y, Bianconi G, et al. Theory of rumour spreading in complex social networks[J]. Physica A: Statistical Mechanics and Its Applications, 2007, 374(1): 457-470. 92 陈一新, 陈馨悦, 刘奕, 等. 基于SIDR模型的谣言传播与源头检测研究[J]. 数据分析与知识发现, 2021, 5(1): 78-89. 93 Chen W L, Zhang Y, Yeo C K, et al. Unsupervised rumor detection based on users’ behaviors using neural networks[J]. Pattern Recognition Letters, 2018, 105: 226-233. 94 Goodfellow I J, Bengio Y, Courville A C. Deep learning[M]. MIT press Cambridge, 2015. 95 高玉君, 梁刚, 蒋方婷, 等. 社会网络谣言检测综述[J]. 电子学报, 2020, 48(7): 1421-1435.