翟东升, 阚慧敏, 李梦洋, 徐硕, 陈蒙蒙. 产业链视角下基于图嵌入的专利布局意图挖掘方法研究[J]. 情报学报, 2022, 41(5): 437-450.
Zhai Dongsheng, Kan Huimin, Li Mengyang, Xu Shuo, Chen Mengmeng. Research on Mining Patent Layout Intention Based on Graph Embedding from the Perspective of Industrial Chain. 情报学报, 2022, 41(5): 437-450.
1 张跃东, 卫平, 胡冰. 中国企业在非对称国际竞争中的专利战略实施状况——基于七省市企业调查问卷[J]. 中国科技论坛, 2019(2): 118-125. 2 Ernst H. Patent portfolios for strategic R&D planning[J]. Journal of Engineering and Technology Management, 1998, 15(4): 279-308. 3 Blind K, Cremers K, Mueller E. The influence of strategic patenting on companies’ patent portfolios[J]. Research Policy, 2009, 38(2): 428-436. 4 Yang Q, Minutolo M C. The strategic approaches for a new typology of firm patent portfolios[J]. International Journal of Innovation and Technology Management, 2016, 13(2): 1650012. 5 赵蓉英, 李新来, 李丹阳. 专利引证视角下的核心专利研究——以人工智能领域为例[J]. 情报理论与实践, 2019, 42(3): 78-84. 6 Lee B K, Sohn S Y. Patent portfolio-based indicators to evaluate the commercial benefits of national plant genetic resources[J]. Ecological Indicators, 2016, 70: 43-52. 7 Li H, Liu L G, Huo J T, et al. Research on patent portfolio design by using of TRIZ method[J]. MATEC Web of Conferences, 2016, 65: 01010. 8 贡小妹, 黄帅, 敦帅, 等. 专利视角下科技型企业竞争力提升路径探究——以华为公司发展的动态过程为例[J]. 科技管理研究, 2018, 38(4): 155-160. 9 刘贵富, 赵英才. 产业链: 内涵、特性及其表现形式[J]. 财经理论与实践, 2006, 27(3): 114-117. 10 贾丽臻, 张换高, 张鹏, 等. 基于专利地图的企业专利布局设计研究[J]. 工程设计学报, 2013, 20(3): 173-179. 11 Wu Y, Fang J. Prediction of technology trend of educational robot industry based on patent map analysis[C]// Proceedings of the International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy. Cham: Springer, 2021: 149-155. 12 Yang X, Liu X, Song J. A study on technology competition of graphene biomedical technology based on patent analysis[J]. Applied Sciences, 2019, 9(13): 2613. 13 Yu X, Zhang B. Obtaining advantages from technology revolution: a patent roadmap for competition analysis and strategy planning[J]. Technological Forecasting and Social Change, 2019, 145: 273-283. 14 Grimaldi M, Cricelli L, Di Giovanni M, et al. The patent portfolio value analysis: a new framework to leverage patent information for strategic technology planning[J]. Technological Forecasting and Social Change, 2015, 94: 286-302. 15 Yoon B, Magee C L. Exploring technology opportunities by visualizing patent information based on generative topographic mapping and link prediction[J]. Technological Forecasting and Social Change, 2018, 132: 105-117. 16 卞秀坤, 郑素丽, 诸葛凯, 等. 基于ISM模型的企业专利组合核心特征分析[J]. 科技管理研究, 2020, 40(3): 95-100. 17 Lin B W, Chen C J, Wu H L. Patent portfolio diversity, technology strategy, and firm value[J]. IEEE Transactions on Engineering Management, 2006, 53(1): 17-26. 18 Luo J X, Yan B W, Wood K. InnoGPS for data-driven exploration of design opportunities and directions: the case of google driverless car project[J]. Journal of Mechanical Design, 2017, 139(11): 111416. 19 Appio F P, De Luca L M, Morgan R, et al. Patent portfolio diversity and firm profitability: a question of specialization or diversification?[J]. Journal of Business Research, 2019, 101: 255-267. 20 Wang Y L, Richard R, McDonald D. Competitive analysis with graph embedding on patent networks[C]// Proceedings of the 2020 IEEE 22nd Conference on Business Informatics. IEEE, 2020: 10-19. 21 王亦凡, 李继云. 基于异构图嵌入学习的相似病案推荐[J]. 计算机系统应用, 2020, 29(10): 228-234. 22 Moon C, Jin C M, Dong X L, et al. Learning Drug-Disease-Target Embedding (DDTE) from knowledge graphs to inform drug repurposing hypotheses[J]. Journal of Biomedical Informatics, 2021, 119: 103838. 23 Perozzi B, Al-Rfou R, Skiena S. DeepWalk: online learning of social representations[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2014: 701-710. 24 Bordes A, Weston J, Collobert R, et al. Learning structured embeddings of knowledge bases[C]// Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2011: 301-306. 25 Socher R, Chen D Q, Manning C D, et al. Reasoning with neural tensor networks for knowledge base completion[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2013: 926-934. 26 Nickel M, Tresp V, Kriegel H P. A three-way model for collective learning on multi-relational data[C]// Proceedings of the 28th International Conference on International Conference on Machine Learning. Madison: Omnipress, 2011: 809-816. 27 Nickel M, Tresp V, Kriegel H P. Factorizing YAGO: scalable machine learning for linked data[C]// Proceedings of the 21st International Conference on World Wide Web. New York: ACM Press, 2012: 271-280. 28 Bordes A, Usunier N, Garcia-Durán A, et al. Translating embeddings for modeling multi-relational data[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2013: 2787-2795. 29 Wang Z, Zhang J W, Feng J L, et al. Knowledge graph embedding by translating on hyperplanes[C]// Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2014: 1112-1119. 30 Lin Y K, Liu Z Y, Sun M S, et al. Learning entity and relation embeddings for knowledge graph completion[C]// Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2015: 2181-2187. 31 Goyal P, Ferrara E. Graph embedding techniques, applications, and performance: a survey[J]. Knowledge-Based Systems, 2018, 151: 78-94. 32 马天旗. 专利布局[M]. 北京: 知识产权出版社, 2016. 33 李清海, 刘洋, 吴泗宗, 等. 专利价值评价指标概述及层次分析[J]. 科学学研究, 2007, 25(2): 281-286. 34 李春燕, 石荣. 专利质量指标评价探索[J]. 现代情报, 2008, 28(2): 146-149. 35 刘杭. 层次分析中的两种近似计算方法[J]. 南京邮电学院学报, 1987, 7(4): 135-139. 36 Saaty T L. Relative measurement and its generalization in decision making why pairwise comparisons are central in mathematics for the measurement of intangible factors the analytic hierarchy/network process[J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2008, 102(2): 251-318.