1 Liang Z T, Mao J, Lu K, et al. Combining deep neural network and bibliometric indicator for emerging research topic prediction[J]. Information Processing & Management, 2021, 58(5): 102611. 2 Tseng Y H, Lin C J, Lin Y I. Text mining techniques for patent analysis[J]. Information Processing & Management, 2007, 43(5): 1216-1247. 3 Lai K K, Wu S J. Using the patent co-citation approach to establish a new patent classification system[J]. Information Processing & Management, 2005, 41(2): 313-330. 4 Min C, Bu Y, Wu D, et al. Identifying citation patterns of scientific breakthroughs: a perspective of dynamic citation process[J]. Information Processing & Management, 2021, 58(1): 102428. 5 Lee C J, Kogler D F, Lee D. Capturing information on technology convergence, international collaboration, and knowledge flow from patent documents: a case of information and communication technology[J]. Information Processing & Management, 2019, 56(4): 1576-1591. 6 Guan J C, Chen Z F. Patent collaboration and international knowledge flow[J]. Information Processing & Management, 2012, 48(1): 170-181. 7 宋凯, 李秀霞, 赵思喆, 等. 基于LDA模型的国家间知识流动分析[J]. 情报杂志, 2017, 36(6): 55-60. 8 He X J, Meng X, Wu Y Y, et al. Semantic matching efficiency of supply and demand texts on online technology trading platforms: taking the electronic information of three platforms as an example[J]. Information Processing & Management, 2020, 57(5): 102258. 9 徐路路, 王芳. 基于支持向量机和改进粒子群算法的科学前沿预测模型研究[J]. 情报科学, 2019, 37(8): 22-28. 10 化柏林. 多源信息融合方法研究[J]. 情报理论与实践, 2013, 36(11): 16-19. 11 孙震. 基于科学论文多源数据的研究前沿集成识别模型研究[J]. 情报杂志, 2016, 35(8): 95-100. 12 刘琦岩, 曾文, 车尧. 面向重点领域科技前沿识别的情报体系构建研究[J]. 情报学报, 2020, 39(4): 345-356. 13 王筠. 文献老化的回归分析与预测[J]. 情报杂志, 2006, 25(6): 68-69. 14 张洋, 林宇航, 侯剑华. 基于融合数据和生命周期的技术预测方法: 以病毒核酸检测技术为例[J]. 情报学报, 2021, 40(5): 462-470. 15 王超, 倪静. 基于SIRS模型的高校科研团队内部隐性知识传播模型[J]. 科技和产业, 2021, 21(10): 234-238. 16 丁俊武, 韩玉启. 浅析技术系统演化理论在机器人技术发展方面的应用[J]. 机器人技术与应用, 2005(5): 37-40. 17 冯立杰, 王亚星, 冯奕程, 等. 基于多维技术创新地图的技术预测研究[J]. 情报杂志, 2017, 36(8): 58-63, 26. 18 刘玉梅, 温馨, 孟翔飞. 基于技术轨道跃迁的突破性技术预测方法及应用研究[J]. 情报杂志, 2021, 40(11): 39-45, 15. 19 杨红平, 马大川. 灰色预测理论在信息分析与预测中的应用[J]. 情报杂志, 2004, 23(3): 22-24. 20 钟昌宝, 聂茂林, 徐永其. 基于灰色马尔柯夫改进模型预测供应链独立需求[J]. 情报杂志, 2009, 28(7): 199-203, 198. 21 宋凯, 朱彦君. 专利前沿技术主题识别及趋势预测方法——以人工智能领域为例[J]. 情报杂志, 2021, 40(1): 33-38. 22 唐川, 唐卷, 房俊民, 等. 图灵奖得主识别与预测研究——基于多文献计量指标和支持向量机[J]. 情报杂志, 2015, 34(2): 69-72, 78. 23 董放, 刘宇飞, 周源. 基于LDA-SVM论文摘要多分类新兴技术预测[J]. 情报杂志, 2017, 36(7): 40-45, 133. 24 王雪. 基于时间序列模型的高水平学科预测研究[J]. 情报杂志, 2019, 38(6): 45-49, 117. 25 王廷满, 沈思. 基于BP神经网络的图书发行量预测模型研究[J]. 情报杂志, 2003, 22(6): 61-62, 65. 26 代鲁凡. 基于深度学习的商品期货趋势预测研究与实现[D]. 西安: 西北大学, 2021. 27 辛泽西. 基于专利数据的技术趋势预测算法的研究与实现[D]. 北京: 北京邮电大学, 2020. 28 曹志鹏, 潘定, 潘启亮. 基于表示学习的双层知识网络链路预测[J]. 情报学报, 2021, 40(2): 135-144. 29 许学国, 桂美增. 基于深度学习的技术预测方法——以机器人技术为例[J]. 情报杂志, 2020, 39(8): 53-62. 30 王兴旺, 董珏, 余婷婷, 等. 基于多种类型信息计量分析的前沿技术预测方法研究[J]. 情报杂志, 2018, 37(10): 70-75, 89. 31 刘汉, 王永莲. 基于混频预测模型改进预测精度——以入境旅游为例[J]. 情报杂志, 2016, 35(9): 75-79. 32 Casteigts A, Flocchini P, Quattrociocchi W, et al. Time-varying graphs and dynamic networks[J]. International Journal of Parallel, Emergent and Distributed Systems, 2012, 27(5): 387-408. 33 Holme P, Saram?ki J. Temporal networks[J]. Physics Reports, 2012, 519(3): 97-125. 34 Kostakos V. Temporal graphs[J]. Physica A: Statistical Mechanics and Its Applications, 2009, 388(6): 1007-1023. 35 Lakshmi T J, Bhavani S D. Temporal probabilistic measure for link prediction in collaborative networks[J]. Applied Intelligence, 2017, 47(1): 83-95. 36 赵蓉英. 知识网络研究(Ⅱ)——知识网络的概念、内涵和特征[J]. 情报学报, 2007, 26(3): 470-476. 37 赵蓉英, 邱均平. 知识网络研究(Ⅰ)——知识网络概念演进之探究[J]. 情报学报, 2007, 26(2): 198-209. 38 马费成, 刘向. 知识网络的演化(Ⅰ): 增长与老化动态[J]. 情报学报, 2011, 30(8): 787-795. 39 马费成, 刘向. 知识网络的演化(Ⅲ): 连接机制[J]. 情报学报, 2011, 30(10): 1015-1021. 40 Li M N, Porter A L, Suominen A, et al. An exploratory perspective to measure the emergence degree for a specific technology based on the philosophy of swarm intelligence[J]. Technological Forecasting and Social Change, 2021, 166: 120621. 41 Chen S H, Huang M H, Chen D Z, et al. Detecting the temporal gaps of technology fronts: a case study of smart grid field[J]. Technological Forecasting and Social Change, 2012, 79(9): 1705-1719. 42 祝娜, 王芳. 基于主题关联的知识演化路径识别研究——以3D打印领域为例[J]. 图书情报工作, 2016, 60(5): 101-109. 43 桂美增, 许学国. 基于深度学习的技术机会预测研究——以新能源汽车为例[J]. 图书情报工作, 2021, 65(19): 130-141. 44 王培妍, 段磊, 郭正山, 等. 基于张量分解的知识超图链接预测模型[J]. 计算机研究与发展, 2021, 58(8): 1599-1611. 45 伍杰华, 高学勤, 王涛. 融合链接预测相似度矩阵的属性网络嵌入算法[J]. 计算机应用研究, 2022, 39(4): 1080-1085. 46 Kashima H, Abe N. A parameterized probabilistic model of network evolution for supervised link prediction[C]// Proceedings of the Sixth International Conference on Data Mining. Piscataway: IEEE, 2007: 340-349. 47 Symeonidis P, Mantas N. Spectral clustering for link prediction in social networks with positive and negative links[J]. Social Network Analysis and Mining, 2013, 3(4): 1433-1447. 48 Yang X, Tian Z, Cui H Y, et al. Link prediction on evolving network using tensor-based node similarity[C]// Proceedings of the 2012 IEEE 2nd International Conference on Cloud Computing and Intelligence Systems. Piscataway: IEEE, 2012: 154-158. 49 Yang C, Liu Z Y. Comprehend DeepWalk as matrix factorization[OL]. (2015-01-02). https://arxiv.org/pdf/1501.00358.pdf. 50 Qiu J Z, Dong Y X, Ma H, et al. Network embedding as matrix factorization: unifying DeepWalk, LINE, PTE, and node2vec[C]// Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. New York: ACM Press, 2018: 459-467. 51 宋浩楠, 赵刚, 孙若莹. 基于深度强化学习的知识推理研究进展综述[J]. 计算机工程与应用, 2022, 58(1): 12-25. 52 吴安彪, 袁野, 马玉亮, 等. 时序图节点嵌入策略的研究[J]. 软件学报, 2021, 32(3): 650-668. 53 汪俊, 岳峰, 王刚, 等. 科研社交网络中基于链接预测的专家推荐研究[J]. 情报杂志, 2015, 34(6): 151-157. 54 任海英, 于立婷, 黄鲁成. 基于链接预测的科学研究机会发现方法研究[J]. 情报杂志, 2016, 35(10): 53-58, 36. 55 宫雪, 崔雷. 基于医学主题词共现网络的链接预测研究[J]. 情报杂志, 2018, 37(1): 66-71, 52. 56 张宁豫, 陈曦, 陈矫彦, 等. 基于位置的知识图谱链接预测[J]. 中文信息学报, 2018, 32(4): 80-86, 129. 57 孙蒙鸽, 王燕鹏, 韩涛, 等. 新兴技术的多指标量化识别研究——基于向量表征方法的探索[J]. 图书情报工作, 2022, 66(3): 130-139. 58 彭敏, 黄婷, 田纲, 等. 聚合邻域信息的联合知识表示模型[J]. 中文信息学报, 2021, 35(5): 46-54. 59 Zhou L K, Yang Y, Ren X, et al. Dynamic network embedding by modeling triadic closure process[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 571-578. 60 Zhu L H, Guo D, Yin J M, et al. Scalable temporal latent space inference for link prediction in dynamic social networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(10): 2765-2777. 61 Kazemi S M, Goel R, Jain K, et al. Relational representation learning for dynamic (knowledge) graphs: a survey[OL]. (2019-05-27). https://arxiv.org/pdf/1905.11485v1.pdf. 62 Assun??o L R C, Mendes P A S, Matos S, et al. Technology roadmap of renewable natural gas: identifying trends for research and development to improve biogas upgrading technology management[J]. Applied Energy, 2021, 292: 116849. 63 Yu X, Zhang B. Obtaining advantages from technology revolution: a patent roadmap for competition analysis and strategy planning[J]. Technological Forecasting and Social Change, 2019, 145: 273-283. 64 Kim J, Geum Y. How to develop data-driven technology roadmaps: the integration of topic modeling and link prediction[J]. Technological Forecasting and Social Change, 2021, 171: 120972. 65 Jiang W W, Luo J Y. Graph neural network for traffic forecasting: a survey[J]. Expert Systems with Applications, 2022, 207: 117921. 66 Hisano R. Semi-supervised graph embedding approach to dynamic link prediction[C]// Proceedings of the International Workshop on Complex Networks. Cham: Springer, 2018: 109-121. 67 Zhu J, Xie Q, Chin E J. A hybrid time-series link prediction framework for large social network[C]// Proceedings of the International Conference on Database and Expert Systems Applications. Heidelberg: Springer, 2012: 345-359. 68 Moradabadi B, Meybodi M R. A novel time series link prediction method: learning automata approach[J]. Physica A: Statistical Mechanics and Its Applications, 2017, 482: 422-432. 69 Box G E P, Jenkins G M, Reinsel G C, et al. Time series analysis: forecasting and control[M]. New York: John Wiley & Sons, 2015. 70 Rabanser S, Shchur O, Günnemann S. Introduction to tensor decompositions and their applications in machine learning[OL]. (2017-11-29). https://arxiv.org/pdf/1711.10781.pdf. 71 Zuo Y, Liu G N, Lin H, et al. Embedding temporal network via neighborhood formation[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM Press, 2018: 2857-2866. 72 Xiong L, Chen X, Huang T K, et al. Temporal collaborative filtering with Bayesian probabilistic tensor factorization[C]// Proceedings of the 2010 SIAM International Conference on Data Mining. Philadelphia: Society for Industrial and Applied Mathematics, 2010: 211-222. 73 Yu W C, Cheng W, Aggarwal C C, et al. Link prediction with spatial and temporal consistency in dynamic networks[C]// Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, 2017: 3343-3349. 74 Xu M K, Luo S T, Bengio Y, et al. Learning neural generative dynamics for molecular conformation generation[OL]. (2021-03-31). https://arxiv.org/pdf/2102.10240.pdf. 75 朱旭振. 基于链路预测的推荐系统: 原理、模型与算法[M]. 北京: 北京邮电大学出版社, 2018. 76 Liben-Nowell D, Kleinberg J. The link-prediction problem for social networks[J]. Journal of the American Society for Information Science and Technology, 2007, 58(7): 1019-1031. 77 Kennedy J, Eberhart R. Particle swarm optimization[C]// Proceedings of the International Conference on Neural Networks. Piscataway: IEEE, 1995: 1942-1948. 78 游丹丹, 陈福集. 基于改进粒子群和BP神经网络的网络舆情预测研究[J]. 情报杂志, 2016, 35(8): 156-161. 79 贾承丰, 韩华, 吕亚楠, 等. 基于Word2Vec和粒子群的链路预测算法[J]. 自动化学报, 2020, 46(8): 1703-1713. 80 刘静秋, 杜文莉, 张飞. 基于粒子群算法的函数复杂度分类法[J]. 控制工程, 2020, 27(8): 1337-1345. 81 王双月, 罗自炎. 一类基于L0/1软间隔损失函数的低秩支持张量机[J]. 运筹学学报, 2021, 25(3): 160-172. 82 Gordon M S, Humble J, Rumbell T, et al. Natural language processor for using speech to cognitively detect and analyze deviations from a baseline: US2020/0219529A1[P]. 2020-07-09. 83 Lee E, Cunnington D T, Chiarella G G, et al. Distinguishing voice commands: WO2021/033088A1[P]. 2021-02-25. 84 王小霞, 傅惠, 杨马进, 等. 动态交通数据丢失的补齐方法研究[J]. 内蒙古农业大学学报(自然科学版), 2016, 37(3): 93-96.