Frontier Influence of the Inter-Directorate in Project Planning: Case Studies of AI Field in NSF Data
Fan Lipeng1, Wang Yuefen1,2,3, Cen Yonghua2,3, Yang Jie1
1.School of Economics & Management, Nanjing University of Science & Technology, Nanjing 210094 2.Management School of Tianjin Normal University, Tianjin 300387 3.Institute for Big Data Science, Tianjin Normal University, Tianjin 300387
范丽鹏, 王曰芬, 岑咏华, 杨洁. 基金项目计划学部交叉及对前沿分布的影响研究——以美国NSF数据中AI领域为例[J]. 情报学报, 2022, 41(9): 956-966.
Fan Lipeng, Wang Yuefen, Cen Yonghua, Yang Jie. Frontier Influence of the Inter-Directorate in Project Planning: Case Studies of AI Field in NSF Data. 情报学报, 2022, 41(9): 956-966.
1 Zhou P, Cai X J, Lyu X Z. An in-depth analysis of government funding and international collaboration in scientific research[J]. Scientometrics, 2020, 125: 1331-1347. 2 王效岳, 刘自强, 白如江, 等. 基于基金项目数据的研究前沿主题探测方法[J]. 图书情报工作, 2017, 61(13): 87-98. 3 Yin Z F, Liang Z, Zhi Q. Does the concentration of scientific research funding in institutions promote knowledge output?[J]. Journal of Informetrics, 2018, 12(4): 1146-1159. 4 Li J P, Xie Y J, Wu D S, et al. Underestimating or overestimating the distribution inequality of research funding? The influence of funding sources and subdivision[J]. Scientometrics, 2017, 112: 55-74. 5 朱蔚彤. 国家自然科学基金委员会资助学科交叉研究模式分析[J]. 中国科学基金, 2006, 20(3): 184-189. 6 樊春良, 樊天. 国外学科交叉研究的发展趋势及启示[J]. 中国科学基金, 2019, 33(5): 446-452. 7 Nichols L G. A topic model approach to measuring interdisciplinarity at the National Science Foundation[J]. Scientometrics, 2014, 100: 741-754. 8 许海云, 尹春晓, 郭婷, 等. 学科交叉研究综述[J]. 图书情报工作, 2015, 59(5): 119-127. 9 Brillouin L. Science and information theory[M]. New York: Academic Press, 1956. 10 Porter A L, Chubin D E. An indicator of cross-disciplinary research[J]. Scientometrics, 1985, 8: 161-176. 11 Stirling A. A general framework for analysing diversity in science, technology and society[J]. Journal of the Royal Society Interface, 2007, 4(15): 707-719. 12 Leydesdorff L, Alkemade F, Heimeriks G, et al. Patents as instruments for exploring innovation dynamics: geographic and technological perspectives on “photovoltaic cells”[J]. Scientometrics, 2015, 102: 629-651. 13 韩正琪, 刘小平, 徐涵. 基于Rao-Stirling指数的学科交叉文献发现——以纳米科学与纳米技术为例[J]. 图书情报工作, 2018, 62(1): 125-131. 14 Liu P, Chen B L, Liu K, et al. Magnetic nanoparticles research: a scientometric analysis of development trends and research fronts[J]. Scientometrics, 2016, 108: 1591-1602. 15 Li M N, Chu Y Q. Explore the research front of a specific research theme based on a novel technique of enhanced co-word analysis[J]. Journal of Information Science, 2017, 43(6): 725-741. 16 Wang Q. A bibliometric model for identifying emerging research topics[J]. Journal of the Association for Information Science and Technology, 2018, 69(2): 290-304. 17 徐路路, 王效岳, 白如江, 等. 基于DTM模型和文本特征分析的基金项目新兴趋势探测研究——以NSF石墨烯领域为例[J]. 数据分析与知识发现, 2018, 2(3): 87-97. 18 刘博文, 白如江, 周彦廷, 等. 基金项目数据和论文数据融合视角下科学研究前沿主题识别——以碳纳米管领域为例[J]. 数据分析与知识发现, 2019, 3(8): 114-122. 19 刘自强, 许海云, 岳丽欣, 等. 面向研究前沿预测的主题扩散演化滞后效应研究[J]. 情报学报, 2018, 37(10): 979-988. 20 National Science Foundation. At a glance[EB/OL]. [2021-03-09]. https://www.nsf.gov/about/glance.jsp. 21 Stirling A. A general framework for analysing diversity in science, technology and society[J]. Journal of the Royal Society Interface, 2007, 4(15): 707-719. 22 王曰芬, 张露, 张洁逸. 产业领域核心专利识别与演化分析——以人工智能领域为例[J]. 情报科学, 2020, 38(12): 19-26. 23 National Science Foundation. Learn about NSF Science and Technology Centers[EB/OL]. [2021-03-09]. https://www.nsf.gov/od/oia/programs/stc/.