|
|
Recognition and Analysis of Science-Technology-Industry Interaction Patterns of Disruptive Technologies |
Xu Haiyun1, Wang Chao1, Chen Liang2, Xu Shuo3, Yang Guancan4, Zhu Lijun2 |
1.Business School, Shandong University of Technology, Zibo 255000 2.Institute of Scientific and Technical Information of China, Beijing 100038 3.School of Economics and Management, Beijing University of Technology, Beijing 100124 4.School of Information Resource Management, Renmin University of China, Beijing 100872 |
|
|
Abstract Disruptive technology is a “from 0 to 1” technology innovation, which can have a disruptive effect on mainstream and existing industries, form a discontinuous innovation trajectory, and ultimately promote economic and social development to produce sudden progress. Exploring the science-technology-industry interaction model of disruptive technologies has guiding significance for exploring their inherent innovation mechanisms and identifying potential disruptive technologies. First, this study adopts well-recognized disruptive technologies as the research object, and selects progressive technologies in similar fields as comparison objects. The knowledge network structure is taken as the research perspective, and we construct a three-layer network of disruptive technologies: science, technology, and industry. Finally, the overall network attribute correlation and community similarity algorithm are used to realize the correlation measurement between knowledge subnets for the identification of science-technology-industry interaction mode. Empirical analysis reveals that disruptive and incremental technology have both commonalities and differences in the correlation and interaction mode of science, technology, and industry. Finally, we present the implications of interactive pattern recognition for disruptive technology identification methods and technology-industry management.
|
Received: 08 August 2022
|
|
|
|
1 National Science Board (US). Enhancing support of transformative research at the National Science Foundation[R]. Alexandria: National Science Foundation, 2007. 2 科技部关于发布国家重点研发计划“变革性技术关键科学问题”重点专项2021年度项目申报指南的通知[EB/OL]. (2021-03-29) [2022-02-12]. https://service.most.gov.cn/kjjh_tztg_all/20210329/4236.html. 3 Xu H Y, Pang H S, Winnink J, et al. Disambiguating the definitions of the concept ‘transformative innovation’[J]. Journal of Information Science, 2023, 49(4): 932-951. 4 科技部关于举办全国颠覆性技术创新大赛的通知[EB/OL]. (2021-07-14) [2021-10-07]. http://www.most.gov.cn/xxgk/xinxifenlei/fdzdgknr/qtwj/qtwj2021/202107/t20210714_175842.html. 5 Popper K R, Weiss G. The logic of scientific discovery[J]. Physics Today , 1959, 12(11): 53-54. 6 张鹏, 雷家骕. 基于科学的产业发展模式研究——以心电图和石墨烯产业为例[J]. 科学学与科学技术管理, 2015, 36(9): 40-53. 7 Xu H Y, Winnink J, Yue Z H, et al. Topic-linked innovation paths in science and technology[J]. Journal of Informetrics, 2020, 14(2): 101014. 8 Xu H Y, Yue Z H, Pang H S, et al. Integrative model for discovering linked topics in science and technology[J]. Journal of Informetrics, 2022, 16(2): 101265. 9 周叔莲, 王伟光. 科技创新与产业结构优化升级[J]. 管理世界, 2001(5): 70-78, 89. 10 许海云, 王超, 龚兵营, 等. 科学-技术关联视角下的新兴研究主题产学研合作适用模式研究——以干细胞研究领域为例[J]. 图书情报工作, 2022, 66(15): 3-13. 11 彭帅, 张春博, 杨阳, 等. 科学-技术-产业关联视角下石墨烯发展国际比较——基于专利的计量研究[J]. 中国科技论坛, 2019(4): 181-188. 12 张鹏, 雷家骕. 基于科学的创新与产业: 相关概念探究与典型产业识别[J]. 科学学研究, 2015, 33(9): 1313-1323, 1356. 13 Momeni A, Rost K. Identification and monitoring of possible disruptive technologies by patent-development paths and topic modeling[J]. Technological Forecasting & Social Change, 2016, 104: 16-29. 14 Nagy D, Schuessler J, Dubinsky A. Defining and identifying disruptive innovations[J]. Industrial Marketing Management, 2016, 57: 119-126. 15 Dotsika F, Watkins A. Identifying potentially disruptive trends by means of keyword network analysis[J]. Technological Forecasting and Social Change, 2017, 119: 114-127. 16 Malerba F. Sectoral systems of innovation and production[J]. Research Policy, 2002, 31(2): 247-264. 17 李巍, 郗永勤. 战略性新兴产业创新系统协同度的测度[J]. 统计与决策, 2017(2): 60-63. 18 董坤, 许海云, 崔斌. 知识流动研究述评[J]. 情报学报, 2020, 39(10): 1120-1132. 19 董坤, 许海云, 罗瑞, 等. 科学与技术的关系分析研究综述[J]. 情报学报, 2018, 37(6): 642-652. 20 Gl?nzel W, Meyer M. Patents cited in the scientific literature: an exploratory study of “reverse” citation Relations[J]. Scientometrics, 2003, 58(2): 415-428. 21 Gao J P, Ding K, Teng L, et al. Hybrid documents co-citation analysis: making sense of the interaction between science and technology in technology diffusion[J]. Scientometrics, 2012, 93(2): 459-471. 22 Huang M H, Yang H W, Chen D Z. Increasing science and technology linkage in fuel cells: a cross citation analysis of papers and patents[J]. Journal of Informetrics, 2015, 9(2): 237-249. 23 Meyer M, Debackere K, Gl?nzel W. Can applied science be ‘good science’? Exploring the relationship between patent citations and citation impact in nanoscience[J]. Scientometrics, 2010, 85(2): 527-539. 24 刘自强, 许海云, 罗瑞, 等. 基于主题关联分析的科技互动模式识别方法研究[J]. 情报学报, 2019, 38(10): 997-1011. 25 Bassecoulard E, Zitt M. Patents and publications[M]// Handbook of Quantitative Science and Technology Research: the Use of Publication and Patent Statistics in Studies of S&T Systems. Dordrecht: Springer, 2005: 665-694. 26 赖院根. 期刊论文与专利文献的链接研究[J]. 图书情报知识, 2011(1): 63-69. 27 陈悦, 宋超, 徐芳. 我国“科学-技术-经济”产出的动态关系测度研究——基于“科学-技术”交互的视角[J]. 科研管理, 2019, 40(1): 12-21. 28 贾建林, 樊霞, 杨世明. 基于技术与基于科学的产业转化关系研究[J]. 科学学研究, 2019, 37(4): 634-642. 29 毛云莹, 陆伟. 基于IPC关联的专利技术和产业双向分析框架研究[J]. 情报科学, 2022, 40(4): 33-39. 30 Timmers P. Building effective public R&D programmes[C]// Proceedings of the Portland International Conference on Management of Engineering and Technology. Piscataway: IEEE, 1999: 591-597. 31 Sen N. Innovation chain and CSIR[J]. Current Science, 2003, 85(5): 570-574. 32 Becker H, Naaman M, Gravano L. Beyond trending topics: real-world event identification on Twitter[J]. Proceedings of the International AAAI Conference on Web and Social Media, 2011, 5(1): 438-441. 33 Ma Z Y, Sun A X, Cong G. On predicting the popularity of newly emerging hashtags in Twitter[J]. Journal of the American Society for Information Science and Technology, 2013, 64(7): 1399-1410. 34 徐晓艺, 杨立英. 基于合著论文的学科知识流动网络的特征分析——以“药物化学”学科为例[J]. 图书情报工作, 2015, 59(1): 89-98. 35 Reagans R E, McEvily B. Network structure and knowledge transfer: the effects of cohesion and range[J]. Administrative Science Quarterly, 2003, 48(2): 240-267. 36 Cowan R, Jonard N. Network structure and the diffusion of knowledge[J]. Journal of Economic Dynamics and Control, 2004, 28(8): 1557-1575. 37 张江甫, 顾新. 基于网络三元组的知识流动模型研究[J]. 情报理论与实践, 2015, 38(8): 120-123, 140. 38 张瑜, 菅利荣, 于菡子. 基于GERT网络的产学研知识流动效应度量[J]. 运筹与管理, 2016, 25(2): 282-287. 39 张江甫, 顾新. 基于双阶段扩散的知识网络知识流动模型及仿真[J]. 情报理论与实践, 2016, 39(5): 74-78. 40 Xu H Y, Winnink J, Yue Z H, et al. Multidimensional Scientometric indicators for the detection of emerging research topics[J]. Technological Forecasting and Social Change, 2021, 163: 120490. 41 Xu H Y, Luo R, Winnink J, et al. A methodology for identifying breakthrough topics using structural entropy[J]. Information Processing & Management, 2022, 59(2): 102862. 42 Dahlin K B, Behrens D M. When is an invention really radical?: Defining and measuring technological radicalness[J]. Research Policy, 2005, 34(5): 717-737. 43 罗瑞, 许海云, 刘亚辉. 基于结构熵的科学突破主题识别——以基因工程疫苗领域为例[J]. 情报理论与实践, 2021, 44(5): 106-114, 99. 44 Giordano G, Ragozini G, Vitale M P. Analyzing multiplex networks using factorial methods[J]. Social Networks, 2019, 59: 154-170. 45 Zhang R J, Ye F Y. Measuring similarity for clarifying layer difference in multiplex ad hoc duplex information networks[J]. Journal of Informetrics, 2020, 14(1): 100987. 46 Ghawi R, Pfeffer J. A community matching based approach to measuring layer similarity in multilayer networks[J]. Social Networks, 2022, 68: 1-14. 47 Wasserman S, Faust K. Social network analysis: methods and applications[M]. Cambridge: Cambridge University Press, 1994. 48 Bródka P, Chmiel A, Magnani M, et al. Quantifying layer similarity in multiplex networks: a systematic study[J]. Royal Society Open Science, 2018, 5(8): 171747. 49 约翰·斯科特. 社会网络分析法[M]. 3版. 刘军, 译. 重庆: 重庆大学出版社, 2016. 50 Onnela J P, Fenn D J, Reid S, et al. Taxonomies of networks from community structure[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2012, 86(3): 036104. 51 许海云, 王超, 董坤, 等. 基于创新链中知识溢出效应的产学研R&D合作对象识别方法研究[J]. 情报学报, 2017, 36(7): 682-694. 52 许海云, 隗玲, 庞弘燊, 等. 产学研潜在合作对象识别方法研究[J]. 情报学报, 2016, 35(5): 521-529. 53 Newman M E J. Fast algorithm for detecting community structure in networks[J]. Physical Review E, 2004, 69(6): 066133. 54 黄朝君, 贾建伟, 秦赫, 等. 基于Copula熵-随机森林的中长期径流预报研究[J]. 人民长江, 2021, 52(11): 81-85. 55 罗良清, 平卫英, 单青松, 等. 中国贫困治理经验总结: 扶贫政策能够实现有效增收吗?[J]. 管理世界, 2022, 38(2): 70-83, 115, 5, V-1-V-3. 56 Ma J, Sun Z Q. Mutual information is copula entropy[J]. Tsinghua Science & Technology, 2011, 16(1): 51-54. 57 Zhao Y, Karypis G. Criterion functions for document clustering: experiments and analysis[R]. Minneapolis: University of Minnesota. 58 谢娟英, 周颖, 王明钊, 等. 聚类有效性评价新指标[J]. 智能系统学报, 2017, 12(6): 873-882. 59 王超, 马铭, 王海燕, 等. 生命周期视角下颠覆性技术的扩散特征研究[J]. 情报学报, 2022, 41(8): 845-859. 60 Clarivate. Welcome to Cortellis Drug Discovery Intelligence, the next generation of Integrity[EB/OL]. [2022-09-04]. https://access.cortellis.com/login?app=drugdiscovery. 61 Brian Arthur W. The nature of technology: what it is and how it evolves[M]. New York: Simon and Schuster, 2009. |
|
|
|