|
|
Research on Semantic Relationship and Representation Standardization Model of Knowledge Graph Based on MDR |
Yuan Man, Liu Mengqi, Mu Mengning |
School of Computer and Information Technology, Northeast Petroleum University, Daqing 163318 |
|
|
Abstract A systematic review and analysis of current research and publications on knowledge graph standardization worldwide revealed that current knowledge graph processes lack standardization of the underlying semantic relation structure and representation. Therefore, based on an metadata registries (MDR) concept meta-model, this study extends semantic relation types and representations, thereby constructing a standard, extensible, and universal semantic relation meta-model for knowledge graphs for providing the necessary semantic elements and realizing the migration from traditional data semantic structure to the semantic structure of a knowledge graph. Subsequently, to standardize semantic relation representation, a standardized ontology stack was constructed for semantic knowledge graph relations under the guidance of the standardization meta-model, which provides a standard construction system for the standard representation of semantic relations of a knowledge graph based on a semantic relation structure. Finally, in the context of business requirements of down-hole operations in oil fields, the relevant semantic relations were registered, thereby achieving the standardization of semantic relations in the knowledge graph of down-hole operations in oil fields. The rationality and correctness of the proposed innovative semantic relation meta-model was verified for knowledge graphs.
|
Received: 09 June 2022
|
|
|
|
1 Bizer C, Lehmann J, Kobilarov G, et al. DBpedia - a crystallization point for the Web of data[J]. Journal of Web Semantics, 2009, 7(3): 154-165. 2 Erxleben F, Günther M, Kr?tzsch M, et al. Introducing Wikidata to the linked data web[C]// Proceedings of the 31st International Semantic Web Conference. Cham: Springer, 2014: 50-65. 3 东南大学. Zhishi.me[EB/OL]. [2023-05-27]. http://openkg.cn/dataset/zhishi-me. 4 清华大学. XLore[EB/OL]. [2023-05-27]. https://xlore.cn/index. 5 中国中医科学院, 中医药信息研究所. 中医药知识图谱[EB/OL]. [2022-05-27]. http://www.tcmkb.cn/kg/index.php. 6 Brickley D, Miller L. FOAF vocabulary specification[EB/OL]. (2004-08-18) [2023-05-27]. http://xmlns.com/foaf/0.1/. 7 Davis I, Vitiello E. RELATIONSHIP: a vocabulary for describing relationships between people[EB/OL]. (2010-04-19) [2022-05-27]. https://vocab.org/relationship/. 8 Vatant B. GeoNames ontology[EB/OL]. (2020-09-18) [2022-06-01]. http://www.geonames.org/ontology. 9 Paulheim H. Knowledge graph refinement: a survey of approaches and evaluation methods[J]. Semantic Web, 2017, 8(3): 489-508. 10 Br?scher M. Semantic relations in knowledge organization systems[J]. Knowledge Organization, 2014, 41(2): 175-180. 11 Standardization I O F. ISO/IEC 11179 Information technology-metadata registries (MDR)[S]. Geneva: International Organization for Standardization, 2004. 12 Albertoni R, Browning D, Cox S, et al. Data catalog vocabulary (DCAT) version 2[EB/OL]. (2020-02-04) [2022-06-01]. https://www.w3.org/TR/vocab-dcat-2/. 13 Albertoni R, Isaac A. Data on the Web best practices: data quality vocabulary[EB/OL]. (2016-12-15) [2022-06-01]. https://www.w3.org/TR/vocab-dqv/. 14 Beeman H, Córdova Y, Adler S. Data on the Web best practices working group charter[EB/OL]. (2016-07-30) [2021-06-05]. https://www.w3.org/2013/05/odbp-charter. 15 ISO/IEC 2382:2015 Information technology—Vocabulary[S/OL]. (2015-05-01) [2022-06-01]. https://www.iso.org/standard/63598.html. 16 IEEE Standards Association. IEEE P2807 knowledge graph working group[EB/OL]. (2019-08-01) [2022-06-01]. http://www.cesi.cn/201909/5589.html. 17 中国电子技术标准化研究院. 知识图谱标准化白皮书[EB/OL]. (2019-09-11) [2023-06-02]. http://www.cesi.cn/201909/5589.html. 18 ISO/IEC DIS 5392 Information technology—Artificial intelligence—Reference architecture of knowledge engineering[S/OL]. [2022-06-01]. https://www.iso.org/standard/81228.html. 19 IEEE Standards Association. Standard for technical requirements of standard-oriented knowledge graphs[R/OL]. (2020-11-28) [2022-06-02]. https://sagroups.ieee.org/2959/wp-content/uploads/sites/388/2021/01/The-PAR-of-P2959.pdf. 20 “数字化创造新机遇 标准化助力新发展”——2021新一代信息技术标准化论坛在深圳召开[J]. 中国标准化, 2021(23): 6-8. 21 ISO/IEC 22989:2022 Information technology—Artificial intelligence—Artificial intelligence concepts and terminology[S/OL]. (2022-07-01) [2022-08-05]. https://www.iso.org/standard/74296.html. 22 ISO/IEC TR 24372:2021 Information technology—Artificial intelligence (AI)—Overview of computational approaches for AI systems[S/OL]. (2021-12-01) [2022-06-05]. https://www.iso.org/standard/78508.html. 23 Doddington G R, Mitchell A, Przybocki M A, et al. The automatic content extraction (ACE) program-tasks, data, and evaluation[C]// Proceedings of the 4th International Conference on Language Resources and Evaluation. Stroudsburg: Association for Computational Linguistics, 2004: 837-840. 24 IEEE Standards Association. Standard for technical requirements and evaluation of knowledge graphs[EB/OL]. (2019-09-05) [2022-06-05]. https://standards.ieee.org/project/2807_1.html. 25 IEEE Standards Association. Guide for application of knowledge graphs for financial services[EB/OL]. (2020-02-13) [2022-06-05]. https://standards.ieee.org/project/2807_2.html. 26 IEEE Standards Association. IEEE guide for electric-power-oriented knowledge graph[EB/OL]. (2020-09-24) [2022-06-05]. https://standards.ieee.org/project/2807_3.html. 27 IEEE Standards Association. Guide for scientific knowledge graphs[EB/OL]. (2021-05-25) [2022-06-05]. https://standards.ieee.org/project/2807_4.html. 28 中国电子技术标准化研究院. 《信息技术 人工智能 知识图谱技术框架》国家标准编制启动会召开[EB/OL]. (2020-01-06) [2022-06-05]. http://www.cesi.cn/202001/5980.html. 29 Kwon S, Monnier L V, Barbau R, et al. Enriching standards-based digital thread by fusing as-designed and as-inspected data using knowledge graphs[J]. Advanced Engineering Informatics, 2020, 46: 101102. 30 Grangel-González I, Vidal M E. Analyzing a knowledge graph of industry 4.0 standards[C]// Companion Proceedings of the Web Conference 2021. New York: ACM Press, 2021: 16-25. 31 Jiang Y K, Gao X, Su W X, et al. Systematic knowledge management of construction safety standards based on knowledge graphs: a case study in China[J]. International Journal of Environmental Research and Public Health, 2021, 18(20): 10692. 32 张慧, 侯霞. 基于知识图谱的标准文献分析[J]. 计算机工程与设计, 2017, 38(4): 1103-1109. 33 尹亮, 何明利, 谢文波, 等. 装备-标准知识图谱的过程建模研究[J]. 计算机科学, 2018, 45(S1): 502-505. 34 袁满, 褚冰, 陈萍. 知识图谱构建中的语义标准问题研究[J]. 情报理论与实践, 2020, 43(3): 131-137. 35 刘慧琳, 牛力. 标准文件的知识图谱组织模式探究[J]. 档案学通讯, 2021(5): 58-65. 36 郝文建, 魏梅, 张浩, 等. 标准知识图谱的构建与应用[J]. 信息技术与标准化, 2021(8): 44-47. 37 李晓瑛, 李军莲, 冀玉静, 等. 基于叙词表及其语义关系的本体构建研究[J]. 情报科学, 2018, 36(11): 83-87. 38 Maia L S, de Lima G ?. A system for specifying semantic relations for knowledge representation[M]// Knowledge Organization at the Interface. Baden-Baden: Ergon, 2020: 245-253. 39 王知津, 郑悦萍. 信息组织中的语义关系概念及类型[J]. 图书馆工作与研究, 2013(11): 13-19. 40 秦春秀, 刘杰, 马晓悦. 知识单元间的语义关系研究进展[J]. 情报理论与实践, 2017, 40(6): 128-133. 41 Green R, Bean C A, Myaeng S H. The semantics of relationships: an interdisciplinary perspective[M]. Dordrecht: Kluwer Academic Publishers, 2002. 42 ISO 1087:2019 Terminology work and terminology science—Vocabulary[S]. (2019-09-01)[2022-06-01]. https://www.iso.org/standard/62330.html. 43 杨义忠. 石油主题词表[M]. 北京: 石油工业出版社, 1994. |
|
|
|