|
|
Exploring the Evolution of Research Topics Based on Partial-Cumulative Citation Co-Word Network with Word2Vec |
Cheng Xiufeng, Zou Jingjing, Ye Guanghui, Xia Lixin |
School of Information Management, Central China Normal University, Wuhan 430079 |
|
|
Abstract Discovering and clarifying the development and evolution of disciplines contribute significantly to scientific research and academic development. Targeting the single-dimension issue in regular co-word analysis, this paper proposes a subject identification and evolution analysis method based on the citation co-word network, and considers the field of “information science” as an example for empirical research. This method defines the “citation co-occurrence” association through the citation relationship, and builds a keyword network with word embedding method. Subsequently, the community detection strategy is adopted to identify field subjects, while the second discrete analysis methods are also employed to analyze the structure and trend of the subjects. The subject evolution path and trend are visualized, the results showing that the network proposed presents better topic clustering and trending visualization effect than the regular co-word networks. Indeed, the aforementioned proves that this method is an effective supplement to co-word analysis.
|
Received: 21 July 2022
|
|
|
|
1 唐果媛. 基于共词分析法的学科主题演化研究方法的构建[J]. 图书情报工作, 2017, 61(23): 100-107. 2 李纲, 巴志超. 共词分析过程中的若干问题研究[J]. 中国图书馆学报, 2017, 43(4): 93-113. 3 蔡永明, 长青. 共词网络LDA模型的中文短文本主题分析[J]. 情报学报, 2018, 37(3): 305-317. 4 王春秀, 冉美丽. 学科主题演化定量分析的理论基础探析[J]. 现代情报, 2008, 28(6): 48-50. 5 叶春蕾, 冷伏海. 基于共词分析的学科主题演化方法改进研究[J]. 情报理论与实践, 2012, 35(3): 79-82. 6 Small H G. A co-citation model of a scientific specialty: a longitudinal study of collagen research[J]. Social Studies of Science, 1977, 7(2): 139-166. 7 Fang Y, Yin J, Wu B H. Climate change and tourism: a scientometric analysis using CiteSpace[J]. Journal of Sustainable Tourism, 2018, 26(1): 108-126. 8 Batisti? S, van der Laken P. History, evolution and future of big data and analytics: a bibliometric analysis of its relationship to performance in organizations[J]. British Journal of Management, 2019, 30(2): 229-251. 9 祝清松, 冷伏海. 基于引文主路径文献共被引的主题演化分析[J]. 情报学报, 2014, 33(5): 498-506. 10 罗双玲, 张文琪, 夏昊翔. 基于半积累引文网络社区发现的学科领域主题演化分析——以“合作演化”领域为例[J]. 情报学报, 2017, 36(1): 100-110. 11 Callon M, Courtial J P, Turner W A, et al. From translations to problematic networks: an introduction to co-word analysis[J]. Social Science Information, 1983, 22(2): 191-235. 12 Kolling M L, Furstenau L B, Sott M K, et al. Data mining in healthcare: applying strategic intelligence techniques to depict 25 years of research development[J]. International Journal of Environmental Research and Public Health, 2021, 18(6): 3099. 13 Rodriguez-Ledesma A, Cobo M J, Lopez-Pujalte C, et al. An overview of animal science research 1945-2011 through science mapping analysis[J]. Journal of Animal Breeding and Genetics, 2015, 132(6): 475-497. 14 Niu B B, Hong S, Yuan J F, et al. Global trends in sediment-related research in earth science during 1992-2011: a bibliometric analysis[J]. Scientometrics, 2014, 98(1): 511-529. 15 Heimeriks G, Boschma R. The path-and place-dependent nature of scientific knowledge production in biotech 1986-2008[J]. Journal of Economic Geography, 2014, 14(2): 339-364. 16 Cheng X Q, Yan X H, Lan Y Y, et al. BTM: topic modeling over short texts[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(12): 2928-2941. 17 Deng S L, Xia S D, Hu J M, et al. Exploring the topic structure and evolution of associations in information behavior research through co-word analysis[J]. Journal of Librarianship and Information Science, 2021, 53(2): 280-297. 18 程齐凯, 王晓光. 一种基于共词网络社区的科研主题演化分析框架[J]. 图书情报工作, 2013, 57(8): 91-96. 19 陈翔, 黄璐, 倪兴兴, 等. 基于动态语义网络分析的主题演化路径识别研究[J]. 情报学报, 2021, 40(5): 500-512. 20 Seifikar M, Farzi S, Barati M. C-blondel: an efficient Louvain-based dynamic community detection algorithm[J]. IEEE Transactions on Computational Social Systems, 2020, 7(2): 308-318. 21 Kim M, Baek I, Song M. Topic diffusion analysis of a weighted citation network in biomedical literature[J]. Journal of the Association for Information Science and Technology, 2018, 69(2): 329-342. 22 刘非凡, 张爽, 罗双玲, 等. 基于深度图神经网络方法的领域知识结构探测[J]. 情报学报, 2021, 40(11): 1209-1220. 23 刘自强, 岳丽欣, 许海云, 等. 时序共词网络构建及其动态可视化研究[J]. 情报学报, 2020, 39(2): 186-198. 24 赵一鸣, 吕鹏辉. 学科知识网络研究(Ⅲ)共词网络的结构、特征与演化[J]. 情报学报, 2014, 33(4): 358-366. 25 Law J, Bauin S, Courtial J P, et al. Policy and the mapping of scientific change: a co-word analysis of research into environmental acidification[J]. Scientometrics, 1988, 14(3): 251-264. 26 袁永旭, 闫秀琳, 王思源, 等. 基于SciMAT的国际医学信息学主题动态演进研究[J]. 中华医学图书情报杂志, 2021, 30(9): 32-41. 27 李永忠, 陈静, 谢隆腾. 共词分析法中战略坐标图的改进研究[J]. 情报理论与实践, 2019, 42(1): 65-69. 28 Chen C M. CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57(3): 359-377. 29 Rosvall M, Bergstrom C T. Mapping change in large networks[J]. PLoS One, 2010, 5(1): e8694. 30 王晓光, 程齐凯. 基于NEViewer的学科主题演化可视化分析[J]. 情报学报, 2013, 32(9): 900-911. 31 Cobo M J, López-Herrera A G, Herrera-Viedma E, et al. An approach for detecting, quantifying, and visualizing the evolution of a research field: a practical application to the Fuzzy Sets Theory field[J]. Journal of Informetrics, 2011, 5(1): 146-166. 32 Cobo M J, López-Herrera A G, Herrera-Viedma E, et al. SciMAT: a new science mapping analysis software tool[J]. Journal of the American Society for Information Science and Technology, 2012, 63(8): 1609-1630. 33 Gad S, Javed W, Ghani S, et al. ThemeDelta: dynamic segmentations over temporal topic models[J]. IEEE Transactions on Visualization and Computer Graphics, 2015, 21(5): 672-685. 34 李树青. 基于引文关键词加权共现技术的图情学科领域本体自动构建方法研究[J]. 情报学报, 2012, 31(4): 371-380. 35 程齐凯, 王佳敏, 陆伟. 基于引用共词网络的领域基础词汇发现研究[J]. 数据分析与知识发现, 2019, 3(6): 57-65. 36 郑华川, 于晓欧, 辛彦. 利用共词聚类分析探讨抗原CD44研究现状[J]. 中华医学图书情报杂志, 2002, 11(2): 1-3. 37 Blondel V D, Guillaume J L, Lambiotte R, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008, 2008(10): P10008. 38 钟伟金, 李佳. 共词分析法研究(二)——类团分析[J]. 情报杂志, 2008, 27(6): 141-143. 39 Palla G, Barabási A L, Vicsek T. Quantifying social group evolution[J]. Nature, 2007, 446(7136): 664-667. 40 王平. 基于层次概率主题模型的科技文献主题发现及演化[J]. 图书情报工作, 2014, 58(22): 70-77. 41 Neff M W, Corley E A. 35 years and 160,000 articles: a bibliometric exploration of the evolution of ecology[J]. Scientometrics, 2009, 80(3): 657-682. 42 隗玲, 许海云, 胡正银, 等. 学科主题演化路径的多模式识别与预测——一个情报学学科主题演化案例[J]. 图书情报工作, 2016, 60(13): 71-81. 43 张瑞, 何禄鑫, 杨艳妮. 考虑语义距离的领域科学知识主题关联与演化研究[J]. 情报杂志, 2022, 41(10): 121-129. |
|
|
|