张贞港, 余传明. 基于知识增强的文本语义匹配模型研究[J]. 情报学报, 2024, 43(4): 416-429.
Zhang Zhengang, Yu Chuanming. A Text Semantic Matching Model Based on Knowledge Enhancement. 情报学报, 2024, 43(4): 416-429.
1 Yang R Q, Zhang J H, Gao X, et al. Simple and effective text matching with richer alignment features[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2019: 4699-4709. 2 Tiwari P, Jaiswal A K, Garg S, et al. SANTM: efficient self-attention-driven network for text matching[J]. ACM Transactions on Internet Technology, 2022, 22(3): Article No.55. 3 冯文政, 唐杰. 融合深度匹配特征的答案选择模型[J]. 中文信息学报, 2019, 33(1): 118-124. 4 梁柱, 沈思, 叶文豪, 等. 基于结构内容特征的裁判文书自动推荐研究[J]. 情报学报, 2022, 41(2): 167-175. 5 施元鹏, 单剑峰. 基于文本相似度的简历匹配推荐算法研究[J]. 计算机仿真, 2022, 39(4): 441-444, 491. 6 李纲, 余辉, 毛进. 基于多层语义相似的技术供需文本匹配模型研究[J]. 数据分析与知识发现, 2021, 5(12): 25-36. 7 Wang X, Yang H M. MGMSN: multi-granularity matching model based on Siamese neural network[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 839586. 8 Wang H Z, Wang S, Han Y H. Detecting fake news on Chinese social media based on hybrid feature fusion method[J]. Expert Systems with Applications, 2022, 208: 118111. 9 张文慧, 汪美玲, 侯志荣. 融合语境语义差异特征的短文本匹配模型[J]. 北京大学学报(自然科学版), 2023, 59(1): 30-38. 10 魏明珠, 郑荣, 高志豪, 等. 融合知识图谱和深度神经网络的产业新兴技术预测模型研究[J]. 情报学报, 2022, 41(11): 1134-1148. 11 Liu J T, Zhang Z Q, Guo Z, et al. KEPT: knowledge enhanced prompt tuning for event causality identification[J]. Knowledge-Based Systems, 2023, 259: 110064. 12 林健成, 蔺晓川. 知识对话系统的零资源在线更新[J]. 中文信息学报, 2022, 36(5): 76-84, 93. 13 宋鹏程, 单丽莉, 孙承杰, 等. 基于查询路径排序的知识库问答系统[J]. 中文信息学报, 2021, 35(11): 109-117, 126. 14 丁亮, 何彦青. 融合领域知识与深度学习的机器翻译领域自适应研究[J]. 情报科学, 2017, 35(10): 125-132. 15 Chen T, Xu R F, He Y L, et al. A gloss composition and context clustering based distributed word sense representation model[J]. Entropy, 2015, 17(12): 6007-6024. 16 Lyu B E, Chen L, Zhu S, et al. LET: linguistic knowledge enhanced graph transformer for Chinese short text matching[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 13498-13506. 17 Zhou G Y, Liu Y, Liu F, et al. Improving question retrieval in community question answering using world knowledge[C]// Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2013: 2239-2245. 18 Chen Q, Zhu X D, Ling Z H, et al. Neural natural language inference models enhanced with external knowledge[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2018: 2406-2417. 19 Huang P S, He X D, Gao J F, et al. Learning deep structured semantic models for web search using clickthrough data[C]// Proceedings of the 22nd ACM International Conference on Information & Knowledge Management. New York: ACM Press, 2013: 2333-2338. 20 Hu B T, Lu Z D, Li H, et al. Convolutional neural network architectures for matching natural language sentences[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014: 2042-2050. 21 Palangi H, Deng L, Shen Y L, et al. Deep sentence embedding using long short-term memory networks: analysis and application to information retrieval[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2016, 24(4): 694-707. 22 Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2017: 5998-6008. 23 Devlin J, Chang M W, Lee K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2019: 4171-4186. 24 Liu Y H, Ott M, Goyal N, et al. RoBERTa: a robustly optimized BERT pretraining approach[OL]. (2019-07-26) [2022-06-11]. https://arxiv.org/pdf/1907.11692.pdf. 25 Lan Z Z, Chen M D, Goodman S, et al. ALBERT: a lite BERT for self-supervised learning of language representations[OL]. (2020-02-09) [2022-06-11]. https://arxiv.org/pdf/1909.11942.pdf. 26 Sun Y, Wang S H, Li Y K, et al. ERNIE 2.0: a continual pre-training framework for language understanding[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(5): 8968-8975. 27 Sun Y, Wang S H, Feng S K, et al. ERNIE 3.0: large-scale knowledge enhanced pre-training for language understanding and generation[OL]. (2021-07-05) [2022-06-11]. http://arxiv.org/pdf/2107.02137.pdf. 28 Wan S X, Lan Y Y, Guo J F, et al. A deep architecture for semantic matching with multiple positional sentence representations[C]// Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2016: 2835-2841. 29 Pang L, Lan Y Y, Guo J F, et al. Text matching as image recognition[C]// Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2016: 2793-2799. 30 Gong Y C, Luo H, Zhang J. Natural language inference over interaction space[OL]. (2018-05-26) [2020-04-02]. https://arxiv.org/pdf/1709.04348.pdf. 31 Huang G, Liu Z, van Der Maaten L, et al. Densely connected convolutional networks[C]// Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269. 32 Wang Z G, Hamza W, Florian R. Bilateral multi-perspective matching for natural language sentences[C]// Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2017: 4144-4150. 33 Chen Q, Zhu X D, Ling Z H, et al. Enhanced LSTM for natural language inference[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2017: 1657-1668. 34 Zhang K, Lyu G Y, Wu L, et al. LadRa-net: locally aware dynamic reread attention net for sentence semantic matching[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(2): 853-866. 35 Miller G A. WordNet: a lexical database for English[J]. Communications of the ACM, 1995, 38(11): 39-41. 36 Xia T Y, Wang Y, Tian Y, et al. Using prior knowledge to guide BERT’s attention in semantic textual matching tasks[C]// Proceedings of the Web Conference 2021. New York: ACM Press, 2021: 2466-2475. 37 Annervaz K M, Basu Roy Chowdhury S, Dukkipati A. Learning beyond datasets: knowledge graph augmented neural networks for natural language processing[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2018: 313-322. 38 Bordes A, Usunier N, Garcia-Duran A, et al. Translating embeddings for modeling multi-relational data[C]// Proceedings of the 27th Annual Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2013: 2799-2807. 39 Wang X Y, Kapanipathi P, Musa R, et al. Improving natural language inference using external knowledge in the science questions domain[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 7208-7215. 40 Liu W J, Zhou P, Zhao Z, et al. K-BERT: enabling language representation with knowledge graph[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 2901-2908. 41 Zhang Z Y, Han X, Liu Z Y, et al. ERNIE: enhanced language representation with informative entities[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2019: 1441-1451. 42 Yamada I, Asai A, Shindo H, et al. LUKE: deep contextualized entity representations with entity-aware self-attention[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2020: 6442-6454. 43 Song M N, Zhao W, HaiHong E. KGAnet: a knowledge graph attention network for enhancing natural language inference[J]. Neural Computing and Applications, 2020, 32(18): 14963-14973. 44 Huang W Y, Qu Q, Yang M. Interactive knowledge-enhanced attention network for answer selection[J]. Neural Computing and Applications, 2020, 32(15): 11343-11359. 45 Li H Z, Wang W H, Liu Z R, et al. A novel locality-sensitive hashing relational graph matching network for semantic textual similarity measurement[J]. Expert Systems with Applications, 2022, 207: 117832. 46 Xu C L, Wang H, Wu S L, et al. Tag-enhanced dynamic compositional neural network over arbitrary tree structure for sentence representation[J]. Expert Systems with Applications, 2021, 181: 115182. 47 Xu C L, Wang H, Wu S L, et al. TreeLSTM with tag-aware hypernetwork for sentence representation[J]. Neurocomputing, 2021, 434: 11-20. 48 Tai K S, Socher R, Manning C D. Improved semantic representations from tree-structured long short-term memory networks[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2015: 1556-1566. 49 Zeb A, Saif S, Chen J D, et al. Complex graph convolutional network for link prediction in knowledge graphs[J]. Expert Systems with Applications, 2022, 200: 116796. 50 Ji S X, Pan S R, Cambria E, et al. A survey on knowledge graphs: representation, acquisition, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(2): 494-514. 51 Dettmers T, Minervini P, Stenetorp P, et al. Convolutional 2D knowledge graph embeddings[C]// Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 1811-1818. 52 Jiang G Y, Liu S, Zhao Y, et al. Fake news detection via knowledgeable prompt learning[J]. Information Processing & Management, 2022, 59(5): 103029. 53 Wang X Z, Gao T Y, Zhu Z C, et al. KEPLER: a unified model for knowledge embedding and pre-trained language representation[J]. Transactions of the Association for Computational Linguistics, 2021, 9: 176-194. 54 Xu B, Xu Y, Liang J Q, et al. CN-DBpedia: a never-ending Chinese knowledge extraction system[C]// Proceedings of the 30th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems. Cham: Springer, 2017: 428-438. 55 Song C G, Ning N W, Zhang Y L, et al. Knowledge augmented transformer for adversarial multidomain multiclassification multimodal fake news detection[J]. Neurocomputing, 2021, 462: 88-100. 56 Yu C M, Xue H D, Jiang Y F, et al. A simple and efficient text matching model based on deep interaction[J]. Information Processing & Management, 2021, 58(6): 102738. 57 Wehrmann J, Kolling C, Barros R C. Adaptive cross-modal embeddings for image-text alignment[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 12313-12320. 58 Khot T, Sabharwal A, Clark P. SciTail: a textual entailment dataset from science question answering[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 5189-5197. 59 Marelli M, Menini S, Baroni M, et al. A SICK cure for the evaluation of compositional distributional semantic models[C]// Proceedings of the 9th International Conference on Language Resources and Evaluation. Stroudsburg: Association for Computational Linguistics, 2014: 216-223. 60 Dolan B W, Brockett C. Automatically constructing a corpus of sentential paraphrases[C]// Proceedings of the Third International Workshop on Paraphrasing. Stroudsburg: Association for Computational Linguistics, 2005: 9-16. 61 Liu X, Chen Q C, Deng C, et al. LCQMC: a large-scale Chinese question matching corpus[C]// Proceedings of the 27th International Conference on Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2018: 1952-1962. 62 Chen J, Chen Q C, Liu X, et al. The BQ corpus: a large-scale domain-specific Chinese corpus for sentence semantic equivalence identification[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2018: 4946-4951. 63 Xu L, Hu H, Zhang X W, et al. CLUE: a Chinese language understanding evaluation benchmark[C]// Proceedings of the 28th International Conference on Computational Linguistics. International Committee on Computational Linguistics, 2020: 4762-4772. 64 Hu H, Richardson K, Xu L, et al. OCNLI: original Chinese natural language inference[C]// Findings of the Association for Computational Linguistics: EMNLP 2020. Stroudsburg: Association for Computational Linguistics, 2020: 3512-3526. 65 Pennington J, Socher R, Manning C. GloVe: global vectors for word representation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2014: 1532-1543. 66 Yang B S, Yih S W T, He X D, et al. Embedding entities and relations for learning and inference in knowledge bases[C]// Proceedings of International Conference on Learning Representations. Washington: ICLR, 2015: 1-12. 67 Chen L, Zhao Y B, Lyu B E, et al. Neural graph matching networks for Chinese short text matching[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2020: 6152-6158. 68 Cui Y M, Che W X, Liu T, et al. Pre-training with whole word masking for Chinese BERT[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 3504-3514.