王兰成. 多学科视域网络舆情知识图谱研究的现状和展望[J]. 情报学报, 2020, 39(10): 1104-1113.
Wang Lancheng. The Prospect of the Construction of a Knowledge Graph of Internet Public Opinion from a Multidisciplinary Perspective. 情报学报, 2020, 39(10): 1104-1113.
1 Mai G C, Yan B, Janowicz K, et al. Relaxing unanswerable geographic questions using a spatially explicit knowledge graph embedding model[C]// Proceedings of the 22nd AGILE Conference on Geographic Information Science. Cham: Springer, 2020: 21-39. 2 Kim H. Building a K-Pop knowledge graph using an entertainment ontology[J]. Knowledge Management Research & Practice, 2017, 15(2): 305-315. 3 Chi Y, Qin Y, Song R, et al. Knowledge graph in smart education: A case study of entrepreneurship scientific publication management[J]. Sustainability, 2018, 10(4): 995. 4 常亮, 张伟涛, 古天龙, 等. 知识图谱的推荐系统综述[J]. 智能系统学报, 2019, 14(2): 207-216. 5 张洋, 谢卓力. 基于多源网络学术信息聚合的知识图谱构建研究[J]. 图书情报工作, 2014, 58(22): 84-94. 6 Zhao Y Y, Qin B, Liu T, et al. Social sentiment sensor: A visualization system for topic detection and topic sentiment analysis on microblog[J]. Multimedia Tools and Applications, 2016, 75(15): 8843-8860. 7 Kim Y, Dwivedi R, Zhang J, et al. Competitive intelligence in social media Twitter: iPhone 6 vs. Galaxy S5[J]. Online Information Review, 2016, 40(1): 42-61. 8 Abedin B, Babar A. Institutional vs. non-institutional use of social media during emergency response: A case of Twitter in 2014 Australian bush fire[J]. Information Systems Frontiers, 2018, 20(4): 729-740. 9 李磊, 刘继. 面向舆情主题的微博用户行为聚类实证分析[J]. 情报杂志, 2014, 33(3): 118-121. 10 朱毅华, 张超群. 基于影响模型的网络舆情演化与传播仿真研究[J]. 情报杂志, 2015, 34(2): 28-36. 11 廖海涵, 靳嘉林, 王曰芬. 网络舆情事件中微博用户行为特征和关系分析——以新浪微博“雾霾调查: 穹顶之下”为例[J]. 情报资料工作, 2016(3): 12-18. 12 郭淼, 焦垣生. 网络舆情传播与演变背景下的微博信息转发预测分析[J]. 情报杂志, 2016, 35(5): 46-51, 37. 13 Choi S. The two-step flow of communication in Twitter-based public forums[J]. Social Science Computer Review, 2015, 33(6): 696-711. 14 Kim Y, Jeong S R. Opinion-mining methodology for social media analytics[J]. KSII Transactions on Internet and Information Systems, 2015, 9(1): 391-406. 15 Overbey L A, Batson S C, Lyle J, et al. Linking Twitter sentiment and event data to monitor public opinion of geopolitical developments and trends[C]// Proceedings of the 10th International Conference on Social Computing, Behavioral-Cultural Modeling and Prediction and Behavior Representation in Modeling and Simulation. Cham: Springer, 2017: 223-229. 16 陈璟浩, 李纲. 突发社会安全事件网络舆情演化的生存分 析——基于70起重大社会安全事件的分析[J]. 情报杂志, 2016, 35(4): 70-74. 17 马哲坤, 涂艳. 基于知识图谱的网络舆情突发话题内容监测研究[J]. 情报科学, 2019, 37(2): 33-39. 18 王晰巍, 韦雅楠, 邢云菲, 等. 社交网络舆情知识图谱发展动态及趋势研究[J]. 情报学报, 2019, 38(12): 1329-1338. 19 王兰成. 知识集成方法与技术[M]. 北京: 国防工业出版社, 2010. 20 焦晓静, 王兰成. 知识图谱的概念辨析与学科定位研究[J]. 图书情报工作, 2015, 59(15): 5-11. 21 娄国哲, 王兰成. 基于知识图谱的网络舆情知识组织方法研究[J]. 情报理论与实践, 2019, 42(1): 58-64. 22 Rospocher M, van Erp M, Vossen P, et al. Building event-centric knowledge graphs from news[J]. Journal of Web Semantics, 2016, 37-38: 132-151. 23 Gottschalk S, Demidova E. EventKG: A multilingual event-centric temporal knowledge graph[C]// Proceedings of the European Semantic Web Conference. Cham: Springer, 2018: 272-287. 24 Hernes M, Bytniewski A. Knowledge representation of cognitive agents processing the economy events[C]// Proceedings of the Asian Conference on Intelligent Information and Database Systems. Cham: Springer, 2018: 392-401. 25 彭立发. 网络社区事件知识图谱构建[D]. 武汉: 华中科技大学, 2019. 26 Li Z Y, Ding X, Liu T. Constructing narrative event evolutionary graph for script event prediction[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence, California: International Joint Conferences on Artificial Intelligence Organization, 2018: 4201-4207. 27 周京艳, 刘如, 李佳娱, 等. 情报事理图谱的概念界定与价值分析[J]. 情报杂志, 2018, 37(5): 31-36, 42. 28 单晓红, 庞世红, 刘晓燕, 等. 基于事理图谱的网络舆情演化路径分析——以医疗舆情为例[J]. 情报理论与实践, 2019, 42(9): 99-103, 85. 29 祝寒. 基于事理图谱的航空安全事故因果关系研究[D]. 天津: 中国民航大学, 2019. 30 Zhou P, Shi W, Tian J, et al. Attention-based bidirectional long short-term memory networks for relation classification[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2016: 207-212. 31 单晓红, 庞世红, 刘晓燕, 等. 基于事理图谱的政策影响分析方法及实证研究[J]. 复杂系统与复杂性科学, 2019, 16(1): 74-82. 32 王兰成, 陈立富. 国内外网络舆情演化、预警和应对理论研究综述[J]. 图书馆杂志, 2018, 37(12): 4-13. 33 蒋瑛. 风险治理视域的突发事件舆情风险生成分析[J]. 新媒体研究, 2018, 4(16): 1-5. 34 胡栓, 刘胜男. 新时代媒体社会责任与评价体系——基于多重视角的分析与探寻[J]. 新闻界, 2018(7): 97-100. 35 张思龙, 王兰成, 娄国哲. 基于情报感知的网络舆情研判与预警系统研究[J/OL]. (2020-09-28). 情报理论与实践, https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJL AST&filename=QBLL20200925001&v=dsPu6H2oTgpk1VV%25mm d2FmopeSqRF1aKr13vMs%25mmd2Fu7a0I%25mmd2FKnLBGIe0UoWIqdAbR%25mmd2Fp4qXj7. 36 丁晓阳, 王兰成. 热点话题发现及展示软件[CP/CD]. 著作权登记号: 2020SR0861926. 37 张明新. 国内网络舆情建模与仿真研究综述[J]. 系统仿真学报, 2019, 31(10): 1983-1994. 38 陈栩杉, 张雄伟, 乔林, 等. 深度学习基本理论概述[J]. 军事通信技术, 2015, 36(4): 96-102.