Negative Emotions of Online Users’ Analysis Based on Bidirectional Long Short-Term Memory
Wu Peng1,2, Ying Yang2, Shen Si1,2
1. School of Economics and Management, Nanjing University of Science and Technology, Nanjing 210094; 2. Jiangsu Collaborative Innovation Center of Social Safety Science and Technology, Nanjing 210094
[1] Choi Y, Lin Y.Consumer Responses to Mattel Product Recalls Posted on Online Bulletin Boards: Exploring Two Types of Emotion[J]. Journal of Public Relations Research, 2009, 21(2): 198-207. [2] 李勇, 蔡梦思, 邹凯, 等. 社交网络用户线上线下情感传播差异及影响因素分析-以“成都女司机被打”事件为例[J]. 情报杂志, 2016, 35(6): 80-85. [3] Silva N F F D, Hruschka E R, Hruschka E R. Tweet sentiment analysis with classifier ensembles[J]. Decision Support Systems, 2014, 66: 170-179. [4] 肖宝, 李璞, 胡娇娇, 等. 基于潜在语义与图结构的微博语义检索[J]. 计算机工程, 2017, 43(6): 182-188. [5] 丁晟春, 吴靓婵媛, 李红梅. 基于SVM的中文微博观点倾向性识别[J]. 情报学报, 2016, 35(12): 1235-1243. [6] Zhang D W, Xu H, Su Z C, et al.Chinese comments sentiment classification based on word2vec and SVM perf[J]. Expert Systems with Applications, 2015, 42(4): 1857-1863. [7] Collobert R, Weston J, Karlen M, et al.Natural Language Processing (Almost) from Scratch[J]. Journal of Machine Learning Research, 2011, 12(1): 2493-2537. [8] Maas A L, Daly R E, Pham P T, et al.Learning word vectors for sentiment analysis[C]// Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2011: 142-150. [9] Jiang F, Liu Y Q, Luan H B, et al.Microblog sentiment analysis with emoticon space model[C]// Proceedings of the Chinese National Conference on Social Media Processing. Heidelberg: Springer, 2014, 489: 76-87. [10] 何炎祥, 孙松涛, 牛菲菲, 等. 用于微博情感分析的一种情感语义增强的深度学习模型[J]. 计算机学报, 2017, 40(4): 773-790. [11] Wang X, Liu Y C, Sun C J, et al.Predicting polarities of tweets by composing word embeddings with long short-term memory[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2015: 1343-1353. [12] Kim Y.Convolutional neural networks for sentence classification[J/OL]. [2014-09-03].https://arxiv.org /pdf/ 1408.5882. [13] Xu J C, Chen D L, Qiu X P, et al.Cached long short-term memory neural networks for document-level sentiment classification [J/OL]. [2016-10-17].https://arxiv.org/pdf/1610.04989. [14] Hochreiter S, Schmidhuber J.Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780. [15] Schuster M, Paliwal K K.Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11): 2673-2681. [16] Zhang S X, Wei Z L, Wang Y, et al.Sentiment analysis of Chinese micro-blog text based on extended sentiment dictionary[J]. Future Generation Computer Systems, 2018, 81: 395-403. [17] Öztürk N, Ayvaz S.Sentiment analysis on Twitter: A text mining approach to the Syrian Refugee Crisis[J]. Telematics & Informatics, 2017, 35(1): 136-147. [18] Poria S, Peng H, Hussain A, et al.Ensemble application of convolutional neural networks and multiple kernel learning for multimodal sentiment analysis[J]. Neurocomputing, 2017, 261: 217-230. [19] 周清清, 章成志. 基于迁移学习微博情绪分类研究-以H7N9微博为例[J]. 情报学报, 2016, 35(4): 339-348. [20] 曹宇, 王名扬, 贺惠新. 情感词典扩充的微博文本多元情感分类研究[J]. 情报杂志, 2016, 35(10): 185-189. [21] Zhang L, Wang S, Liu B.Deep learning for sentiment analysis: A survey[OL]. [2018-01-30].https://arxiv.org/pdf/1801.07883. [22] Bengio Y, Ducharme R, Vincent P, et al.A neural probabilistic language model[J]. Journal of Machine Learning Research, 2003, 3: 1137-1155. [23] Mikolov T, Sutskever I, Chen K, et al.Distributed representations of words and phrases and their compositionality[J]. Advances in Neural Information Processing Systems, 2013, 26: 3111-3119. [24] Zhang Z H, Wu G S, Lan M.ECNU: Multi-level sentiment analysis on twitter using traditional linguistic features and word embedding features[C]// Proceedings of the 9th International Workshop on Semantic Evaluation. Stroudsburg: Association for Computational Linguistics, 2015: 561-567. [25] Tang D Y, Wei F R, Yang N, et al.Learning sentiment-specific word embedding for Twitter sentiment classification[C]// Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2014: 1555-1565. [26] Yu L C, Wang J, Lai K R, et al.Refining word embeddings for sentiment analysis[C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2017: 534-539. [27] Mishra A, Tamilselvam S, Dasgupta R, et al.Cognition-cognizant sentiment analysis with multitask subjectivity summarization based on annotators’ gaze behavior[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. AAAI Press, 2018: 1631-1638. [28] Balikas G, Moura S, Amini M R.Multitask learning for fine-grained Twitter sentiment analysis[C]// Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2017: 1005-1008. [29] Baziotis C, Pelekis N, Doulkeridis C.DataStories at SemEval-2017 Task 4: Deep LSTM with attention for message-level and topic-based sentiment analysis[C]// Proceedings of the 11th International Workshop on Semantic Evaluations. Stroudsburg: Association for Computational Linguistics, 2017: 747-754. [30] Shen Q Z, Wang Z J, Sun Y R.Sentiment analysis of movie reviews based on CNN-BLSTM[C]// Proceedings of the International Conference on Intelligence Science. Cham: Springer, 2017, 510: 164-171. [31] Chen T, Xu R F, He Y L, et al.Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN[J]. Expert Systems with Applications, 2017, 72: 221-230. [32] Yoon J, Kim H.Multi-channel lexicon integrated CNN-BiLSTM models for sentiment analysis[C]// Proceedings of the 29th Conference on Computational Linguistics and Speech Processing, 2017: 244-253.