Automatic Recommendation of Judgment Documents Based on Structural Content Features
Liang Zhu1, Shen Si2, Ye Wenhao3, Wang Dongbo1
1.College of Information Management, Nanjing Agricultural University, Nanjing 210095 2.School of Economics & Management, Nanjing University of Science and Technology, Nanjing 210094 3.School of Information Management, Nanjing University, Nanjing 210023
1 李振宇. 法律文献的特征、类型及考证与检索[J]. 人文杂志, 2002(2): 158-160. 2 黄俏娟, 罗旭东. 人工智能与法律结合的现状及发展趋势[J]. 计算机科学, 2018, 45(12): 1-11. 3 Chalkidis I, Kampas D. Deep learning in law: early adaptation and legal word embeddings trained on large corpora[J]. Artificial Intelligence and Law, 2019, 27(2): 171-198. 4 Giri R, Porwal Y, Shukla V, et al. Approaches for information retrieval in legal documents[C]// Proceedings of the 2017 Tenth International Conference on Contemporary Computing. IEEE, 2017: 1-6. 5 张琳, 秦策, 叶文豪. 基于条件随机场的法言法语实体自动识别模型研究[J]. 数据分析与知识发现, 2017, 1(11): 46-52. 6 黄菡, 王宏宇, 王晓光. 结合主动学习的条件随机场模型用于法律术语的自动识别[J]. 数据分析与知识发现, 2019, 3(6): 66-74. 7 高丹, 彭敦陆, 刘丛. 海量法律文书中基于CNN的实体关系抽取技术[J]. 小型微型计算机系统, 2018, 39(5): 1021-1026. 8 Li Z H. A classification retrieval approach for English legal texts[C]// Proceedings of the 2019 International Conference on Intelligent Transportation, Big Data & Smart City. IEEE, 2019: 220-223. 9 陆伟, 黄永, 程齐凯. 学术文本的结构功能识别——功能框架及基于章节标题的识别[J]. 情报学报, 2014, 33(9): 979-985. 10 黄永, 陆伟, 程齐凯. 学术文本的结构功能识别——基于章节内容的识别[J]. 情报学报, 2016, 35(3): 293-300. 11 黄永, 陆伟, 程齐凯, 等. 学术文本的结构功能识别——基于段落的识别[J]. 情报学报, 2016, 35(5): 530-538. 12 黄永, 陆伟, 程齐凯, 等. 学术文本的结构功能识别——在学术搜索中的应用[J]. 情报学报, 2016, 35(4): 425-431. 13 Zhuang C H, Zhou Y M, Ge J D, et al. Information extraction from Chinese judgment documents[C]// Proceedings of the 2017 14th Web Information Systems and Applications Conference. IEEE, 2017: 240-244. 14 赵彦. 司法裁判文书的网络检索路径[J]. 学术交流, 2015(5): 126-131. 15 黄都培. 基于本体的法律信息语义检索[J]. 计算机工程与应用, 2008, 44(28): 196-199. 16 黄都培. 法律信息语义检索方法研究[J]. 法律文献信息与研究, 2009(4): 1-10. 17 邢启迪, 耿骞, 赵盼云, 等. 法律文献资源关联模型设计与应用研究[J]. 图书情报工作, 2017, 61(10): 131-140. 18 Wagh R S, Anand D. Legal document similarity: a multi-criteria decision-making perspective[J]. PeerJ Computer Science, 2020, 6: e262. 19 Padayachy T, Scholtz B, Wesson J. An information extraction model using a graph database to recommend the most applied case[C]// Proceedings of the 2018 International Conference on Computing, Electronics & Communications Engineering. IEEE, 2018: 89-94. 20 Kanapala A, Jannu S, Pamula R. Passage-based text summarization for legal information retrieval[J]. Arabian Journal for Science and Engineering, 2019, 44(11): 9159-9169. 21 Marques M R S, Bianco T, Roodnejad M, et al. Machine learning for explaining and ranking the most influential matters of law[C]// Proceedings of the Seventeenth International Conference on Artificial Intelligence and Law. New York: ACM Press, 2019: 239-243. 22 陈文哲, 秦永彬, 黄瑞章, 等. 基于犯罪行为序列的法律条文预测方法[J]. 计算机工程与应用, 2019, 55(22): 245-249, 264. 23 涂海, 彭敦陆, 陈章, 等. S2SA-BiLSTM: 面向法律纠纷智能问答系统的深度学习模型[J]. 小型微型计算机系统, 2019, 40(5): 1034-1039. 24 McElvain G, Sanchez G, Matthews S, et al. WestSearch Plus: a non-factoid question-answering system for the legal domain[C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2019: 1361-1364. 25 Zhou X, Zhang Y, Liu X, et al. Legal intelligence for e-commerce: multi-task learning by leveraging multiview dispute representation[C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2019: 315-324. 26 Joachims T. Text categorization with Support Vector Machines: learning with many relevant features[C]// Proceedings of the European Conference on Machine Learning. Heidelberg: Springer, 1998: 137-142. 27 Joachims T. Training linear SVMs in linear time[C]// Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2006: 217-226. 28 Burges C, Shaked T, Renshaw E, et al. Learning to rank using gradient descent[C]// Proceedings of the 22nd International Conference on Machine Learning. New York: ACM Press, 2005: 89-96. 29 Burges C J C, Svore K M, Bennett P N, et al. Learning to rank using an ensemble of lambda-gradient models[C]// Proceedings of the 2010 International Conference on Yahoo! Learning to Rank Challenge. JMLR.org, 2010, 14: 25-35. 30 Burges C J C. From RankNet to LambdaRank to LambdaMART: an overview[R/OL]. Microsoft Research Technical Report MSR-TR-2010-82, 2010, https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/MSR-TR-2010-82.pdf.