|
|
Empirical Study of Knowledge Association Methods for Major Scientific Discoveries |
Ren Xiaoya1,2, Zhang Zhiqiang1,3 |
1.National Science Library (Chengdu), Chinese Academy of Sciences, Chengdu 610299 2.National Science Library, Chinese Academy of Sciences, Beijing 100190 3.Department of Information Resources Management, School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190 |
|
|
Abstract Scientific discovery is that of “undiscovered discoveries,” and major scientific discoveries can promote the exploration and development of science. The emergence of scientific discovery is a complex phenomenon, and scientific knowledge is embedded therein. However, owing to the proliferation of information; limitations of knowledge; and artificial removal, concealment, or weakening, more undiscovered implicit relationships between scientific discoveries exist. Therefore, we present a knowledge association method of scientific discoveries that combines multiple citation relations to determine the knowledge-based associations between major scientific discoveries from a deeper granularity and a more diverse perspective. We adopt the Fields Medal, Lasker Award, and Turing Award as the empirical research objects. Quantitative and time series analyses are used to explore the knowledge dissemination regularities and characteristics of scientific discovery between various fields from the perspective of backtracking, combined with a qualitative interpretation of scientific discoveries and expert consultation. Finally, we refine the knowledge dissemination patterns of scientific discovery. Our results reveal five types of knowledge dissemination patterns between scientific discoveries: linear (simple and closed linear), bridge, radial, and multiple. Our empirical findings could deepen researchers’ understanding of the regularities of scientific discoveries and provide a reference for policy formulation in research funding and scientific evaluation.
|
Received: 13 September 2022
|
|
|
|
1 汉语词典. 科学发现[EB/OL]. [2019-11-25]. https://cd.hwxnet.com/view/cfaalmclaamaidga.html. 2 杨耀坤. 科学发现论[M]. 成都: 四川科学技术出版社, 1994: 7-8. 3 钱时惕. 关于科学发现的思维结构[J]. 科学技术与辩证法, 1989, 6(3): 37-40. 4 邱仁宗. 成功之路: 科学发现的模式[M]. 北京: 人民出版社, 1987. 5 陈其荣. 诺贝尔自然科学奖与科学发现[J]. 上海大学学报(社会科学版), 2019, 36(5): 105-122. 6 任晓亚, 张志强. 基于国际权威科学奖励的科学发现规律研究述评[J]. 情报学报, 2022, 41(2): 202-216. 7 任晓亚, 张志强, 陈云伟. 杰出科学家的科研产出规律——以拉斯克医学研究奖得主为例[J]. 情报学报, 2019, 38(9): 894-906. 8 Polanyi M. The tacit dimension[M]. Chicago: The University of Chicago Press, 1966. 9 杨中楷, 梁永霞. 专利引文分析的理论与实践[M]. 北京: 科学出版社, 2017. 10 曹志杰, 冷伏海. 共词分析法用于文献隐性关联知识发现研究[J]. 情报理论与实践, 2009, 32(10): 99-103. 11 Ding Y, Zhang G, Chambers T, et al. Content-based citation analysis: the next generation of citation analysis[J]. Journal of the Association for Information Science and Technology, 2014, 65(9): 1820-1833. 12 Uddin S, Choudhury N, Hossain M E. A research framework to explore knowledge evolution and scholarly quantification of collaborative research[J]. Scientometrics, 2019, 119(2): 789-803. 13 颜端武, 苏琼, 任婷, 等. 基于引文主路径和时序主题的科学发现知识演进分析[J]. 情报理论与实践, 2020, 43(6): 102-108, 122. 14 王曰芬, 丁玉飞, 刘卫江. 基于知识进化视角的科学文献传播网络演变研究[J]. 情报资料工作, 2016(2): 5-10. 15 丁玉飞, 关鹏. 知识进化视角下科学文献传播网络演化与预测研究及应用[J]. 图书情报工作, 2018, 62(4): 72-80. 16 滕立. 基于知识单元的科学发现链式结构研究[D]. 大连: 大连理工大学, 2012. 17 岳增慧, 许海云. 学科引证网络知识扩散特征研究[J]. 情报学报, 2019, 38(1): 1-12. 18 巴志超, 李纲, 朱世伟. 科研合作网络的知识扩散机理研究[J]. 中国图书馆学报, 2016, 42(5): 68-84. 19 周秋菊, 杨立英, 岳婷, 等. 基于期刊同被引和互引网络的学科结构和知识流动研究[J]. 情报杂志, 2014, 33(8): 84-91. 20 高继平, 丁堃, 滕立, 等. 专利—论文混合共被引网络下的知识流动探析[J]. 科学学研究, 2011, 29(8): 1184-1189, 1146. 21 Maggioni M A, Uberti T E. International networks of knowledge flows: an econometric analysis[J]. Papers on Economics & Evolution, 2006, 28(273): 709-751. 22 You T, Yoon J, Kwon O H, et al. Tracing the evolution of physics with a keyword co-occurrence network[J]. Journal of the Korean Physical Society, 2021, 78(3): 236-243. 23 王曰芬, 王金树, 关鹏. 主题-主题关联的学科知识网络构建与演化分析[J]. 情报科学, 2018, 36(9): 9-15, 102. 24 董坤, 许海云, 罗瑞, 等. 科学与技术的关系分析研究综述[J]. 情报学报, 2018, 37(6): 642-652. 25 Ding C G, Hung W C, Lee M C, et al. Exploring paper characteristics that facilitate the knowledge flow from science to technology[J]. Journal of Informetrics, 2017, 11(1): 244-256. 26 马恒通. 文献与知识的进化[J]. 自然辩证法通讯, 2005, 27(6): 68-73, 38. 27 任晓亚, 张志强. 主要科技领域国际权威奖项规律及其驱动因素分析[J]. 情报学报, 2019, 38(9): 881-893. 28 任晓亚. 基于权威科学奖项的科学发现演变规律与知识传递研究[D]. 北京: 中国科学院大学, 2021. 责任编辑 王克平) |
|
|
|