|
|
Construction of Super-Network for Emergency Information Cooperation |
Zhang Xinrui1, Zhang Haitao1,2,3, Luan Yu1, Zhang Chunlong1 |
1.School of Business and Management, Jilin University, Changchun 130012 2.Information Resource Research Center, Jilin University, Changchun 130012 3.Institute of National Development and Security Studies, Jilin University, Changchun 130012 |
|
|
Abstract The world is currently undergoing profound, unprecedented changes. The COVID-19 outbreak severely tested the world, making the era of digital wisdom considerably unpredictable and replete with challenges``. Developing methods for improving the efficiency of emergency management has become a key issue. This study innovatively explored the information cooperation process based on multi-agent collaboration in emergencies from the perspective of a super network and analyzed the internal logic of information cooperation. Further, this study constructed a multi-agent collaborative network based on the collaborative relationship between multiple agents, the co-evolution between text information networks, text by keywords co-occurrence relationships between formation information gene networks, and the mining and defining of distinct longitudinal dynamic mapping relationship between the three types of network. A super-network model was eventually constructed for emergency information cooperation; moreover, a visual analysis and verification were conducted on actual public health emergency cases. This study achieved an in-depth understanding of emergency information, identified the core information gene with collaborative values, mined core agents and texts, and analyzed the dynamic and evolutionary nature of the information collaboration process. Ultimately, the findings of this study promote the construction of a deep and panoramic information collaborative network relationship, provide new research ideas and methods for the subsequent exploration of practical application, enable collaborative decision-making in emergencies under the concept of national security with intelligence wisdom, provide constructive suggestions for social collaborative governance, and make emergency management digital and intelligent.
|
Received: 10 August 2022
|
|
|
|
1 陈超. 如何应对“信息疫情”——再谈疫情防控阻击战中的信息情报[J]. 竞争情报, 2020, 16(2): 1. 2 世卫组织: 新冠疫情继续构成“国际关注的突发公共卫生事件”[EB/OL]. (2022-07-12) [2022-08-05]. https://baijiahao.baidu.com/s?id=1738155860232702038&wfr=spider&for=pc. 3 原平方, 王文萧, 梁欣彤. 新冠肺炎疫情下的国际新闻“信息疫情”与世界图景建构[J]. 新闻爱好者, 2022(4): 31-35. 4 王世伟. 略论“信息疫情”十大特征[J]. 图书馆杂志, 2020, 39(3): 19-23. 5 World Health Organization. Novel coronavirus (2019-nCoV): situation report - 13[R/OL]. (2020-02-02) [2022-07-29]. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200202-sitrep-13-ncov-v3.pdf. 6 龚立群. 重大突发公共卫生事件中“信息疫情”的形成原因、治理困境及其突破路径[J]. 情报探索, 2022(6): 37-46. 7 张连峰, 张鑫蕊, 张海涛. 突发公共卫生事件信息协同研究现状与展望[J]. 现代情报, 2022, 42(7): 156-166. 8 张鑫蕊, 张海涛, 李依霖, 等. 突发公共卫生事件信息协同关键要素识别研究[J]. 情报理论与实践, 2022, 45(3): 141-148. 9 张鹏, 赵动员, 梅蕾. 移动社交网络信息传播研究述评与展望[J]. 情报科学, 2020, 38(2): 170-176. 10 李中梅, 张向先, 郭顺利, 等. 新媒体环境下智库信息传播网络结构实证分析研究[J]. 情报科学, 2021, 39(2): 146-156. 11 Zantow K, Yu J, Ye G Y, et al. An integrated model for user innovation knowledge based on super-network[J]. IEEE Transactions on Engineering Management, 2022, 69(2): 399-408. 12 张连峰, 周红磊, 王丹, 等. 基于超网络理论的微博舆情关键节点挖掘[J]. 情报学报, 2019, 38(12): 1286-1296. 13 杨湘浩, 阚顺玉, 叶旭, 等. 基于超网络的突发事件网络谣言传播模型研究[J]. 情报理论与实践, 2021, 44(10): 129-136. 14 Yuan Y, Wang F. An emergency supplies scheduling for chemical industry park: based on super network theory[J]. Environmental Science and Pollution Research, 2022, 29(26): 39345-39358. 15 许海云, 董坤, 刘昊, 等. 基于异构网络的学科交叉主题发现方法[J]. 情报科学, 2017, 35(6): 130-137, 153. 16 陈文杰. 基于超图的科研合作推荐研究[J]. 数据分析与知识发现, 2023, 7(4): 68-76. 17 Yuan G A, Kong D W, Sun L S, et al. Connectivity contribution to urban hub network based on super network theory - case study of Beijing[J]. Promet - Traffic&Transportation, 2021, 33(1): 35-47. 18 Wei S T, Zhang Z, Chen X T. How does business incubator motivate start-ups based on super-network: a dynamic capability perspective[J]. Journal of Intelligent & Fuzzy Systems, 2021, 40(6): 11131-11144. 19 王忠群, 王族, 钱寅亮, 等. 基于超网络和在线评论的产品竞争力分析[J]. 情报理论与实践, 2022, 45(4): 113-119. 20 张海涛, 张春龙, 张鑫蕊, 等. 新文科背景下“情报学+”人才的时代意蕴[J]. 中国图书馆学报, 2022, 48(4): 67-78. 21 张海涛, 李佳玮, 周红磊, 等. 重大突发事件演变机制: 认知框架与理论方法[J]. 情报学报, 2021, 40(9): 914-923. 22 Nagurney A, Dong J E, Zhang D. A supply chain network equilibrium model[J]. Transportation Research Part E: Logistics and Transportation Review, 2002, 38(5): 281-303. 23 许鹏程, 毕强. 基于知识超网络的领域专家识别研究[J]. 数据分析与知识发现, 2019, 3(11): 89-98. 24 张海涛, 周红磊, 李佳玮, 等. 信息不完全状态下重大突发事件态势感知研究[J]. 情报学报, 2021, 40(9): 903-913. 25 周红磊, 张海涛, 张鑫蕊, 等. 话题-情感图谱: 突发公共卫生事件舆情引导的切入点[J]. 情报科学, 2020, 38(7): 15-21. 26 张海涛, 张鑫蕊, 周红磊, 等. 突发公共卫生事件中用户情绪演变的关键因素及影响机理[J]. 情报科学, 2020, 38(7): 9-14, 29. 27 狄鹤, 张海涛, 张连峰. WSR三元定位视角下突发公共事件的政府多主体信息协同机制研究[J]. 情报杂志, 2021, 40(7): 189-194, 188. 28 张海涛, 刘雅姝, 周红磊, 等. 情报智慧赋能: 重大突发事件的智能协同决策[J]. 情报科学, 2020, 38(9): 3-8. 29 任亮. 开放式创新社区知识协同创新研究[D]. 长春: 吉林大学, 2020. 30 张海涛, 任亮, 刘伟利, 等. 基于超网络的用户知识协同创新研究——以开放式创新社区“花粉俱乐部”为例[J]. 情报学报, 2021, 40(4): 402-413. |
|
|
|