|
|
Identifying Emerging Scientific Topics by Abrupt Change of Knowledge Structure |
Duan Qingfeng, Chen Hong, Yan Xuxian, Liu Dongxia |
School of Management Science & Engineering, Shanxi University of Finance & Economics, Taiyuan 030006 |
|
|
Abstract Understanding the structural transformation of knowledge is key to identify emerging scientific topics. Novel distribution of knowledge elements implies that emerging topics occur, and transformation of knowledge structure has become the characteristic to identify emerging topics. Following these ideas, we measured the difference of structure between two knowledge networks in sequential time using the WL subtree kernel and propose an indicator in terms of structure transformation of knowledge to suggest the extent to which a new topic emerges. In addition, we propose another indicator that measures the growth rate of a topic’s influence over time using the PageRank algorithm. Then, these two indicators together compose a two-dimensional space for identification and form an integrated solution based on the dynamic topology of the knowledge network. The empirical research in the field of information science well-validated our method, with high sensitivity and effective discrimination towards emerging topics with high value in the short term. These topological transformation-based indicators are capable of quantitatively analyzing the evolution of academic topics and offer a unique view of knowledge structure to enable scientific evolution.
|
Received: 29 August 2022
|
|
|
|
1 Rotolo D, Hicks D, Martin B R. What is an emerging technology?[J]. Research Policy, 2015, 44(10): 1827-1843. 2 Xu H Y, Winnink J, Yue Z H, et al. Multidimensional scientometric indicators for the detection of emerging research topics[J]. Technological Forecasting and Social Change, 2021, 163: 120490. 3 Xu S, Hao L Y, An X, et al. Emerging research topics detection with multiple machine learning models[J]. Journal of Informetrics, 2019, 13(4): 100983. 4 Small H, Boyack K W, Klavans R. Identifying emerging topics in science and technology[J]. Research Policy, 2014, 43(8): 1450-1467. 5 刘小玲, 谭宗颖. 新兴技术主题识别方法研究进展[J]. 图书情报工作, 2020, 64(11): 145-152. 6 Yang Z L, Zhang W J, Yuan F, et al. Measuring topic network centrality for identifying technology and technological development in online communities[J]. Technological Forecasting and Social Change, 2021, 167: 120673. 7 赵蓉英, 田沛霖, 常茹茹. 数据科学研究的主题关联结构与发展演化态势——共词网络视角[J]. 图书馆学研究, 2021(11): 2-12. 8 吴江, 王凯利, 董克, 等. 信息计量领域网络分析方法应用研究综述[J]. 情报学报, 2021, 40(10): 1118-1128. 9 赵妍, 赵书良, 马秋微. 基于图核的异质信息网络链路预测方法[J]. 计算机应用研究, 2021, 38(10): 3125-3130. 10 Xu S, Hao L Y, An X, et al. Review on emerging research topics with key-route main path analysis[J]. Scientometrics, 2020, 122(1): 607-624. 11 Ye C L. Mapping the evolution of research topics using ATM and SNA[J]. Journal of Data and Information Science, 2014, 7(4): 46-62. 12 卢超, 侯海燕, DingYing, 等. 国外新兴研究话题发现研究综述[J]. 情报学报, 2019, 38(1): 97-110. 13 Deng S L, Xia S D, Hu J M, et al. Exploring the topic structure and evolution of associations in information behavior research through co-word analysis[J]. Journal of Librarianship and Information Science, 2021, 53(2): 280-297. 14 段庆锋, 潘小换. 利用社交媒体识别学科新兴主题研究[J]. 情报学报, 2017, 36(12): 1216-1223. 15 Huang L, Chen X, Ni X X, et al. Tracking the dynamics of co-word networks for emerging topic identification[J]. Technological Forecasting and Social Change, 2021, 170: 120944. 16 黄璐, 朱一鹤, 张嶷. 基于加权网络链路预测的新兴技术主题识别研究[J]. 情报学报, 2019, 38(4): 335-341. 17 黄月, 张昕. 基于主题词和LDA模型的知识结构识别研究[J]. 现代情报, 2022, 42(3): 48-56. 18 Xu S, Hao L Y, Yang G C, et al. A topic models based framework for detecting and forecasting emerging technologies[J]. Technological Forecasting and Social Change, 2021, 162: 120366. 19 周建, 刘炎宝, 刘佳佳. 情感分析研究的知识结构及热点前沿探析[J]. 情报学报, 2020, 39(1): 111-124. 20 Lu K, Yang G C, Wang X. Topics emerged in the biomedical field and their characteristics[J]. Technological Forecasting and Social Change, 2022, 174: 121218. 21 刘自强, 岳丽欣, 许海云, 等. 时序共词网络构建及其动态可视化研究[J]. 情报学报, 2020, 39(2): 186-198. 22 Wang Q. A bibliometric model for identifying emerging research topics[J]. Journal of the Association for Information Science and Technology, 2018, 69(2): 290-304. 23 赵国荣, 王文剑, 杨光. 一种基于组块分析的共现词提取方法[J]. 情报科学, 2017, 35(12): 129-135. 24 Xiao K J, Qian Z P, Qin B. A graphical decomposition and similarity measurement approach for topic detection from online news[J]. Information Sciences, 2021, 570: 262-277. 25 Mu L, Jin P Q, Zhao J, et al. Detecting evolutionary stages of events on social media: a graph-kernel-based approach[J]. Future Generation Computer Systems, 2021, 123: 219-232. 26 Katsurai M, Ono S. TrendNets: mapping emerging research trends from dynamic co-word networks via sparse representation[J]. Scientometrics, 2019, 121(3): 1583-1598. 27 Nikolentzos G, Siglidis G, Vazirgiannis M. Graph kernels: a survey[J]. Journal of Artificial Intelligence Research, 2021, 72: 943-1027. 28 王兆慧, 沈华伟, 曹婍, 等. 图分类研究综述[J]. 软件学报, 2022, 33(1): 171-192. 29 吴博, 梁循, 张树森, 等. 图神经网络前沿进展与应用[J]. 计算机学报, 2022, 45(1): 35-68. 30 Zhang J C, Fei J Y, Song X P, et al. An improved Louvain algorithm for community detection[J]. Mathematical Problems in Engineering, 2021, 2021: 1485592. 31 Zhang Y J, Ma J L, Wang Z J, et al. Collective topical PageRank: a model to evaluate the topic-dependent academic impact of scientific papers[J]. Scientometrics, 2018, 114(3): 1345-1372. |
|
|
|