|
|
Review of Research on the Regularities of Scientific Discovery Based on International Authoritative Scientific Awards |
Ren Xiaoya1,2, Zhang Zhiqiang2,3 |
1.National Science Library, Chinese Academy of Sciences, Beijing 100190 2.Chengdu Library and Information Center, Chinese Academy of Sciences, Chengdu 610041 3.Department of Library, Information and Archives Management, School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190 |
|
|
Abstract Scientific awards are the consensus-based academic evaluation of specific scientific discoveries made by the relevant scientific community, which can reflect the trends in scientific breakthroughs and development. To clarify the characteristics, contents and regularities, as well as questions and trends of scientific awards-related research, we comprehensively use qualitative and quantitative analysis methods. First, starting from the relevant concepts and theoretical foundations of scientific awards, we focus on scientific award recipients (scientific discovery producers) and award-winning contributions (scientific discovery) in these two research subjects. Second, we classify the main research contents, characteristics, and differences of relevant research in China and abroad in detail. Finally, we try to summarize the shortcomings of existing research, and potential perspectives and trends of future research on the regularities of scientific discovery based on international authoritative scientific awards.
|
Received: 17 August 2020
|
|
|
|
1 姚昆仑. 20世纪全球科技奖励的发展及特点分析[J]. 中国科技奖励, 2008(3): 26-27. 2 姚昆仑. 国外科技奖励的起源与发展(三)[J]. 中国科技奖励, 2012(10): 74-75. 3 Merton R K. The Matthew Effect in science[J]. Science, 1968, 159(3810): 56-63. 4 Zuckerman H. The proliferation of prizes: Nobel complements and Nobel surrogates in the reward system of science[J]. Theoretical Medicine, 1992, 13(2): 217-231. 5 Charlton B G. Measuring revolutionary biomedical science 1992-2006 using Nobel Prizes, Lasker (clinical medicine) Awards and Gairdner Awards (NLG metric)[J]. Medical Hypotheses, 2007, 69(1): 1-5. 6 Charlton B G. Scientometric identification of elite ‘revolutionary science’ research institutions by analysis of trends in Nobel Prizes 1947-2006[J]. Medical Hypotheses, 2007, 68(5): 931-934. 7 Charlton B G. Which are the best nations and institutions for revolutionary science 1987-2006? Analysis using a combined metric of Nobel Prizes, Fields Medals, Lasker Awards and Turing Awards (NFLT metric)[J]. Medical Hypotheses, 2007, 68(6): 1191-1194. 8 赵红州. 论科学发现的采掘模型(上)[J]. 科学学与科学技术管理, 1981, 2(2): 3-5. 9 赵红州, 蒋国华. 再论科学发现的采掘模型[J]. 科学学研究, 1985, 3(1): 40-52. 10 舒炜光. 科学发现的连锁反应[J]. 科学学与科学技术管理, 1982, 3(1): 29-30. 11 Frey B S, Neckermann S. Awards as signals[OL]. (2010-11-17). http://dx.doi.org/10.2139/ssrn.1709308. 12 Merton R K. Priorities in scientific discovery: a chapter in the sociology of science[J]. American Sociological Review, 1957, 22(6): 635-659. 13 R.K.默顿. 科学社会学[M]. 鲁旭东, 林聚任, 译. 北京: 商务印书馆, 2004. 14 Gaston J. The reward system in British science[J]. American Sociological Review, 1970, 35(4): 718. 15 杰里·加斯顿. 科学的社会运行[M]. 顾昕, 等译. 北京: 光明日报出版社, 1988. 16 Latour B, Woolgar S. Laboratory life: the construction of scientific facts[M]. Princeton: Princeton University Press, 1986. 17 Ma Y F, Uzzi B. Scientific prize network predicts who pushes the boundaries of science[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(50): 12608-12615. 18 王炎坤, 刘燕美, 黄灿宏. 试探科技奖励的本质[J]. 科学学研究, 1996, 14(2): 54-57. 19 么大中. 科技奖励的级别与声誉[J]. 科学学研究, 1998, 16(1): 91-95. 20 姚昆仑. 国外有关科技奖励理论的评述(下)[J]. 中国科技奖励, 2006(9): 63-65, 69. 21 徐顽强, 熊小刚. 我国非政府科技奖励的发展现状、动因及趋势[J]. 中国科技论坛, 2010(6): 13-16, 121. 22 尚智丛. 科学社会学——方法与理论基础[M]. 北京: 高等教育出版社, 2008: 128. 23 尚智丛, 唐素琴, 杨辉. 我国社会科技奖励调查分析[J]. 自然辩证法通讯, 2009, 31(5): 50-55, 111. 24 张先恩, 周文能, 金碧辉, 等. 国际科学技术奖概况[M]. 北京: 科学出版社, 2009. 25 郑俊涛. 基于声誉调查和奖项图谱的国际科学技术奖项评价研究[D]. 上海: 上海交通大学, 2016. 26 Meho L I. Highly prestigious international academic awards and their impact on university rankings[J]. Quantitative Science Studies, 2020, 1(2): 824-848. 27 Zheng J T, Liu N C. Mapping of important international academic awards[J]. Scientometrics, 2015, 104(3): 763-791. 28 李奕嬴, 朱军文. 经济学国际学术奖项的类别、相互关系及影响力高低的图谱分析[J]. 情报杂志, 2017, 36(5): 82-89. 29 任晓亚, 张志强. 主要科技领域国际权威奖项规律及其驱动因素分析[J]. 情报学报, 2019, 38(9): 881-893. 30 乔纳森?科尔, 斯蒂芬?科尔. 科学界的社会分层[M]. 赵佳苓, 顾昕, 黄绍林, 译. 北京: 华夏出版社, 1989. 31 Zuckerman H. Scientific elite: Nobel laureates in the United States[M]. New York: The Free Press, 1977. 32 Bernal J D. The social function of science[M]. London: Faber & Faber, 2010. 33 de Solla Price D J. The science of scientists[J]. Medical Opinion & Review, 1966, 1: 88-97. 34 王炎坤, 钟书华, 张宣平, 等. 科技奖励的社会运行[M]. 武汉: 华中理工大学出版社, 1993: 76-79. 35 张克菊, 孙涛涛. 诺贝尔讲演引文分析及其情报价值研究初探——以6位遗传学领域获奖者为例[J]. 情报杂志, 2011, 30(7): 26-29, 12. 36 O’Sullivan A. Henry Dale’s Nobel Prize winning discovery[J]. Minerva, 2001, 39(4): 409-424. 37 Molitor S C. Prize fight: the race and the rivalry to be the first in science[J]. Journal of the American Medical Association, 2012, 308(21): 2282-2283. 38 Jones B F, Weinberg B A. Age dynamics in scientific creativity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(47): 18910-18914. 39 Chan H F, Torgler B. The implications of educational and methodological background for the career success of Nobel laureates: an investigation of major awards[J]. Scientometrics, 2015, 102(1): 847-863. 40 Garfield E. The 250 most-cited primary authors, 1961-1975. Part II. The correlation between citedness, Nobel Prizes and academy memberships[OL]. Essays of an Information Scientist, 1977, 3: 337-347. (1977-12-12). http://www.garfield.library.upenn.edu/essays/v3p337y1977-78.pdf. 41 Garfield E. Are the 1979 prizewinners of Nobel class?[OL]. Essays of an Information Scientist, 1980, 4: 609-617. (1980-09-22). http://garfield.library.upenn.edu/essays/v4p609y1979-80.pdf. 42 Garfield E. Do Nobel Prize winners write citation classics?[OL]. Essays of an Information Scientist, 1986, 9: 182-187. (1986-06-09). http://www.garfield.library.upenn.edu/essays/v9p182y1986.pdf. 43 Gingras Y, Wallace M L. Why it has become more difficult to predict Nobel Prize winners: a bibliometric analysis of nominees and winners of the chemistry and physics prizes(1901-2007)[J]. Scientometrics, 2010, 82(2): 401-412. 44 Ashton S V, Oppenheim C. A method of predicting Nobel prizewinners in chemistry[J]. Social Studies of Science, 1978, 8(3): 341-348. 45 Mazloumian A, Eom Y H, Helbing D, et al. How citation boosts promote scientific Paradigm Shifts and Nobel Prizes[J]. PLoS One, 2011, 6(5): e18975. 46 Frandsen T F, Nicolaisen J. The ripple effect: citation chain reactions of a Nobel Prize[J]. Journal of the American Society for Information Science and Technology, 2013, 64(3): 437-447. 47 Hu X J, Rousseau R. Nobel Prize winners 2016: igniting or sparking foundational publications?[J]. Scientometrics, 2017, 110(2): 1053-1063. 48 Rothenberg A, Wyshak G. Family background and genius[J]. Canadian Journal of Psychiatry, 2004, 49(3): 185-191. 49 Rothenberg A. Family background and genius II: Nobel laureates in science[J]. Canadian Journal of Psychiatry, 2005, 50(14): 918-925. 50 Zwart H. The Nobel Prize as a reward mechanism in the genomics era: anonymous researchers, visible managers and the ethics of excellence[J]. Journal of Bioethical Inquiry, 2010, 7(3): 299-312. 51 Maurage P, Heeren A, Pesenti M. Does chocolate consumption really boost Nobel Award chances? The peril of over-interpreting correlations in health studies[J]. The Journal of Nutrition, 2013, 143(6): 931-933. 52 Doi H, Heeren A, Maurage P. Scientific activity is a better predictor of Nobel Award chances than dietary habits and economic factors[J]. PLoS One, 2014, 9(3): e92612. 53 Campbell D. Nobel laureates and the economic impact of research: a case study[EB/OL]. [2018-10-16]. http://www.sciencemetrics.org/nobel-laureates-economic-impact/?utm_source=SciTS. 54 Baffes J, Vamvakidis A. Are you too young for the Nobel Prize?[J]. Research Policy, 2011, 40(10): 1345-1353. 55 Brunt L, Lerner J, Nicholas T. Inducement prizes and innovation[J]. The Journal of Industrial Economics, 2012, 60(4): 657-696. 56 Moser P, Nicholas T. Prizes, publicity and patents: non-monetary awards as a mechanism to encourage innovation[J]. The Journal of Industrial Economics, 2013, 61(3): 763-788. 57 May R M. The scientific wealth of nations[J]. Science, 1997, 275(5301): 793-796. 58 Cherrier B, Svoren?ík A. Defining excellence: seventy years of the John Bates Clark Medal[J]. Journal of the History of Economic Thought, 2020, 42(2): 153-176. 59 Ioannidis J P A, Cristea I A, Boyack K W. Work honored by Nobel Prizes clusters heavily in a few scientific fields[J]. PLoS One, 2020, 15(7): e0234612. 60 Horner K L, Rushton J P, Vernon P A. Relation between aging and research productivity of academic psychologists[J]. Psychology and Aging, 1986, 1(4): 319-324. 61 Stephan P E, Levin S G. Age and the Nobel Prize revisited[J]. Scientometrics, 1993, 28(3): 387-399. 62 Chan H F, Torgler B. Time-lapsed awards for excellence[J]. Nature, 2013, 500(7460): 29. 63 Li J C, Yin Y, Fortunato S, et al. Scientific elite revisited: patterns of productivity, collaboration, authorship and impact[J]. Journal of the Royal Society Interface, 2020, 17(165): 20200135. 64 Li J C, Yin Y A, Fortunato S, et al. Nobel laureates are almost the same as us[J]. Nature Reviews Physics, 2019, 1(5): 301-303. 65 Liu L, Wang Y, Sinatra R, et al. Hot streaks in artistic, cultural, and scientific careers[J]. Nature, 2018, 559(7714): 396-399. 66 Fortunato S. Growing time lag threatens Nobels[J]. Nature, 2014, 508(7495): 186. 67 Parolo P, Pan R, Becattini F, et al. The Nobel Prize delay[J/OL]. Physics Today, (2014-05-27). http://doi.org/10.1063/PT.5.2012. 68 Chan H F, ?nder A S, Torgler B. The first cut is the deepest: repeated interactions of coauthorship and academic productivity in Nobel laureate teams[J]. Scientometrics, 2016, 106(2): 509-524. 69 Mukherjee S, Romero D M, Jones B, et al. The nearly universal link between the age of past knowledge and tomorrow’s breakthroughs in science and technology: the hotspot[J]. Science Advances, 2017, 3(4): e1601315. 70 Heiberger R H, Wieczorek O J. Choosing collaboration partners. How scientific success in physics depends on network positions[OL]. (2016-10-01). https://arxiv.org/ftp/arxiv/papers/1608/1608.03251.pdf. 71 Chariker J H, Zhang Y H, Pani J R, et al. Identification of successful mentoring communities using network-based analysis of mentor-mentee relationships across Nobel laureates[J]. Scientometrics, 2017, 111(3): 1733-1749. 72 Bentivoglio M, Vercelli A, Filogamo G. Giuseppe Levi: mentor of three Nobel laureates[J]. Journal of the History of the Neurosciences, 2006, 15(4): 358-368. 73 Borjas G J, Doran K B. Prizes and productivity: how winning the fields medal affects scientific output[J]. Journal of Human Resources, 2015, 50(3): 728-758. 74 科睿唯安引文桂冠奖[EB/OL]. [2019-10-10]. https://clarivate.com.cn/citation-laureates/. 75 Radicchi F, Fortunato S, Markines B, et al. Diffusion of scientific credits and the ranking of scientists[J]. Physical Review E, 2009, 80: 056103 76 Gros C. An empirical study of the per capita yield of science Nobel Prizes: is the US era coming to an end?[J]. Royal Society Open Science, 2018, 5(5): 180167. 77 Allen M. Is the end in sight for US Nobel Prize dominance?[EB/OL]. (2018-05-16). https://physicsworld.com/a/is-the-end-in-sight-for-us-nobel-prize-dominance/. 78 Dong Y X, Ma H, Shen Z H, et al. A century of science: globalization of scientific collaborations, citations, and innovations[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2017: 1437-1446. 79 Karazija R, Momkauskait? A. The Nobel Prize in physics-regularities and tendencies[J]. Scientometrics, 2004, 61(2): 191-205. 80 Tong S C, Ahlgren P. Evolution of three Nobel Prize themes and a Nobel snub theme in chemistry: a bibliometric study with focus on international collaboration[J]. Scientometrics, 2017, 112(1): 75-90. 81 Garfield E, Sher I H, Torpie R J. The use of citation data in writing the history of science[M]. Phialadelphia: Institute for Scientific Information, 1964. 82 Garfield E. Historiographic mapping of knowledge domains literature[J]. Journal of Information Science, 2004, 30(2): 119-145. 83 Egghe L, Guns R, Rousseau R. Thoughts on uncitedness: Nobel laureates and fields medalists as case studies[J]. Journal of the American Society for Information Science and Technology, 2011, 62(8): 1637-1644. 84 Campanario J M. Rejecting and resisting Nobel class discoveries: accounts by Nobel laureates[J]. Scientometrics, 2009, 81(2): 549-565. 85 赵红州. 科学能力学引论[M]. 北京: 科学出版社, 1984. 86 赵红州. 关于科学家社会年龄问题的研究[J]. 自然辩证法通讯, 1979, 1(4): 29-44. 87 刘则渊. 理论科学学一般问题研究[C]// 中国科学学与科技政策研究会成立二十周年(1982—2002)纪念文集. 北京: 中国科学学与科技政策研究会, 2002: 76-107. 88 周光召. 历史的启迪和重大科学发现产生的条件[J]. 科技导报, 2000, 18(1): 3-9. 89 路甬祥. 规律与启示——从诺贝尔自然科学奖与20世纪重大科学成就看科技原始创新的规律[J]. 西安交通大学学报(社会科学版), 2000, 20(4): 3-11. 90 金碧辉, 刘俊婉. 缔造科学: 从诺贝尔奖现象看科学研究的特点[J].科学观察, 2006, 1(6): 1-9. 91 刘俊婉. 从诺贝尔奖现象看科学创造的特征[J]. 科学学研究, 2009, 27(9): 1289-1297. 92 艾凉琼. 从诺贝尔自然科学奖看现代科研合作——以2008—2010年诺贝尔自然科学奖为例[J]. 科技管理研究, 2012, 32(10): 229-232. 93 刘仲林, 赵晓春. 跨学科研究: 科学原创性成果的动力之源——以百年诺贝尔生理学和医学奖获奖成果为例[J]. 科学技术与辩证法, 2005, 22(6): 105-109. 94 陈其荣. 诺贝尔自然科学奖与跨学科研究[J]. 上海大学学报(社会科学版), 2009, 16(5): 48-62. 95 张春美, 郝凤霞, 闫宏秀. 学科交叉研究的神韵——百年诺贝尔自然科学奖探析[J]. 科学技术与辩证法, 2001, 18(6): 63-67. 96 叶鹰, 刘艳阳. 科技类诺贝尔奖定性聚类分析[J]. 科学学与科学技术管理, 2005, 26(2): 17-20. 97 赵红州, 梁立明, 王元. 重大科技成果威布尔分布的普遍性[J]. 科学学与科学技术管理, 1992, 13(3): 5-12. 98 朱晶. 诺贝尔化学奖得主群体创新方法探析[J]. 科学学研究, 2014, 32(10): 1461-1467, 1487. 99 高媛, 刘新科. 诺贝尔科学奖获得者的教育背景分析及其启迪[J]. 技术与创新管理, 2009, 30(3): 373-376. 100 郝凤霞, 张春美. 原创性思维的源泉——百年诺贝尔奖获奖者知识交叉背景研究[J]. 自然辩证法研究, 2001, 17(9): 55-59. 101 段志光, 卢祖洵. 诺贝尔生理学或医学奖美国获得者学术条件背景分析[J]. 医学与哲学(人文社会医学版), 2007, 28(6): 78-79. 102 章娟. 世界一流科学家科学论文计量分析——以诺贝尔生理学或医学奖获得者为例[D]. 太原: 山西医科大学, 2009. 103 鲍玉芳, 马建霞. 诺贝尔奖与科学家论文数量、被引频次的相关性——基于2000—2010年诺贝尔化学、物理学获奖者的实证研究[J]. 图书馆理论与实践, 2015(8): 40-45. 104 王周谊. 社会科学研究论文数量与质量的例证分析——以2001年经济学诺贝尔奖获得者George A. Akerlof为例[J]. 社会科学管理与评论, 2008(1): 39-42. 105 段志光, 卢祖洵, 王爱珍, 等. 诺贝尔生理学或医学奖获得者论文影响力研究[J]. 科学学研究, 2006, 24(5): 672-676. 106 和晋飞, 房俊民. 基于Google Scholar引文数据的引文速度指标探析——以“图灵奖文献”为例[J]. 情报理论与实践, 2015, 38(4): 86-91, 56. 107 李江, 姜明利, 李玥婷. 引文曲线的分析框架研究——以诺贝尔奖得主的引文曲线为例[J]. 中国图书馆学报, 2014, 40(2): 41-49. 108 王双, 赵筱媛, 潘云涛, 等. 学术谱系视角下的科技人才成长研究——以图灵奖人工智能领域获奖者为例[J]. 情报学报, 2018, 37(12): 1232-1240. 109 梁立明, 赵红州. 科学发现年龄定律是一种威布尔分布[J]. 自然辩证法通讯, 1991, 13(1): 28-36. 110 门伟莉, 张志强. 科研创造峰值年龄变化规律研究——以自然科学领域诺奖得主为例[J]. 科学学研究, 2013, 31(8): 1152-1159. 111 王荣德. 从诺贝尔科学奖看创造性人才的培养与管理[J]. 科研管理, 2007, 28(1): 125-131. 112 许合先. 科技诺贝尔奖领域知识创新与人才培养的传递链效应及其启示[J]. 科学管理研究, 2007, 25(6): 97-100, 104. 113 鲍雪莹, 陈贡, 刘木林. 基于履历信息的国际科技人才特征分析——以近十年诺贝尔物理、化学、生理或医学奖得主为例[J]. 现代情报, 2014, 34(9): 4-9. 114 李宏伟. 从诺贝尔奖的人文精神反思我国教育现状[J]. 自然辩证法通讯, 2007, 29(2): 98-99. 115 张志强, 门伟莉. 诺贝尔物理学奖获得者中师承效应量化研究[J]. 情报学报, 2014, 33(9): 926-935. 116 门伟莉, 张志强. 诺贝尔科学奖跨学科师承效应定量研究[J]. 科学学研究, 2015, 33(4): 498-506. 117 段志光, 许丹青. 诺贝尔生理学或医学奖获得者科学论文国家、机构与学科合作关系研究[J]. 科学技术哲学研究, 2015, 32(3): 96-102. 118 段志光, 许丹青. 诺贝尔生理学或医学奖获得者科学论文作者合作关系研究[J]. 科学技术哲学研究, 2015, 32(2): 92-96. 119 郑俊涛, 刘念才. 基于共同获奖人的国际科研奖项权重和相对关系研究[J]. 情报杂志, 2015, 34(4): 37-42. 120 张克菊. 遗传学领域诺奖科学知识传承的计量学研究[D]. 北京: 中国科学院文献情报中心, 2011. 121 滕立. 基于知识单元的科学发现链式结构研究[D]. 大连: 大连理工大学, 2012. 122 滕立. 共被引网络的形成与演化——以重大科学发现为例[C]// 第九届中国科技政策与管理学术年会论文集. 北京: 中国科学学与科技政策研究会, 2013: 429-438. 123 郭倩影, 杜建, 唐小利. 学术传承意义上“学术链”的识别方法探讨——以2014年诺贝尔化学奖为例[J]. 情报资料工作, 2018(2): 29-36. 124 郭世杰, 王学昭, 韩涛, 等. 大科学装置“预期-实际-扩展应用”链式模型及其实证研究——以日本SACLA装置为例[J]. 情报学报, 2019, 38(11): 1187-1199. 125 胡智慧, 王溯. “科技立国”战略与“诺贝尔奖计划”——日本建设世界科技强国之路[J]. 中国科学院院刊, 2018, 33(5): 520-526. 126 张志强, 田倩飞, 陈云伟. 科技强国主要科技指标体系比较研究[J]. 中国科学院院刊, 2018, 33(10): 1052-1063. 127 杜建, 武夷山. 基于被引速率指标识别睡美人文献及其“王子”——以2014年诺贝尔化学奖得主Stefan Hell的睡美人文献为例[J]. 情报学报, 2015, 34(5): 508-521. 128 张庆芝, 李慧聪, 雷家骕. 科学家参与学术创业的程度及对成果商业化的影响[J]. 技术经济与管理研究, 2018(3): 55-58. 129 张庆芝, 段勇倩, 雷家骕. 基于科学的创新研究——以诺贝尔奖科学成果到商业产品为例[J]. 科学学研究, 2015, 33(12): 1770-1778, 1866. 130 Guthrie S, Wamae W, Diepeveen S, et al. Measuring research: a guide to research evaluation frameworks and tools[R/OL]. Santa Monica: RAND Corporation, 2013: MG-1217-AAMC. [2020-05-23]. https://www.rand.org/pubs/monographs/MG1217.html. 131 HeyT, TansleyS, TolleK. 第四范式: 数据密集型科学发现[M]. 潘教峰, 张晓林, 等译. 北京: 科学出版社, 2012. 132 洛埃特?雷迭斯多夫. 科学计量学的挑战: 科学交流的发展、测度和自组织[M]. 乌云, 等译. 北京: 科学技术文献出版社, 2003. 133 RousseauRonald, 任晓亚, 张志强. 偶然性科学发现的规律特点及其科学政策启示[J].世界科技研究与发展, 2019, 41(6): 649-659. |
|
|
|