|
|
The Characteristic, Principle and Method of Collaborative Construction of Context Ontology Based on Concept Lattice Integration in Context-Aware System |
Jiang Yongchang1, Man Xiaoli2, Wang Honglu3 |
1.Institute of Business & Economic Research, Harbin University of Commerce, Harbin 150028 2.School of Business, Harbin University of Commerce, Harbin 150028 3.Library of Heilongjiang University, Harbin 150080 |
|
|
Abstract To build a context-aware system (CAS) in the collaborative construction of context ontology (COnt) of heterogeneous resources and environmental dynamic information in various fields, it is essential to provide accurate context aware services for users’ decision-making. Therefore, based on the similarity of concept lattice and COnt, the necessity, uniqueness and feasibility of integrated realization, this paper theoretically distributes and integrates the two types of context resources of the system based on the context life cycle. It is proposed that the former can obtain unified domain COnt modeling and network constraint representation in the hierarchical structure of its concept lattice integration based on knowledge creation reality three-dimensional abstraction, and the latter can obtain the context awareness meta-ontology (CAMOnt) modeling and problem solving oriented instantiation creation in the human-machine interaction cognition of context-aware middleware based on visualization of the users' actual application situation by the conceptual lattice deconstruction of domain COnt and its reconstruction through “5Ws1H” awareness association with environmental resources. Considering the evolution of fire emergency domain COnt to fire rescue CAMOnt as an example, the analysis shows that CAS can be effectively established in this COnt collaborative construction method and provides users with accurate context-aware services.
|
Received: 05 March 2021
|
|
|
|
1 Schilit B N, Theimer M M. Disseminating active map information to mobile hosts[J]. IEEE Network, 1994, 8(5): 22-32. 2 Pradeep P, Krishnamoorthy S. The MOM of context-aware systems: a survey[J]. Computer Communications, 2019, 137: 44-69. 3 van Engelenburg S, Janssen M, Klievink B. Designing context-aware systems: a method for understanding and analysing context in practice[J]. Journal of Logical and Algebraic Methods in Programming, 2019, 103: 79-104. 4 Studer R, Benjamins V R, Fensel D. Knowledge engineering: principles and methods[J]. Data & Knowledge Engineering, 1998, 25(1/2): 161-197. 5 Aguilar J, Jerez M, Exposito E, et al. CARMiCLOC: context awareness middleware in cloud computing[C]// Proceedings of the 2015 Latin American Computing Conference. IEEE, 2015: 1-10. 6 毕强, 鲍玉来. 数字图书馆知识组织体系构建的发展路径——概念格与本体的互补融合[J]. 华中师范大学学报(人文社会科学版), 2011, 50(5): 130-136. 7 李金海, 魏玲, 张卓, 等. 概念格理论与方法及其研究展望[J]. 模式识别与人工智能, 2020, 33(7): 619-642. 8 李金海, 何有世, 马云蕾, 等. 基于多层领域本体的知识表示通用模型研究[J]. 计算机工程与应用, 2020, 56(11): 149-155. 9 唐旭丽, 张斌, 傅维刚. 情境本体驱动的多源知识融合框架[J]. 图书情报工作, 2018, 62(22): 109-117. 10 姜永常, 王红露, 李浩. CKAIC中基于概念格整合异构资源的情境本体构建[J]. 现代情报, 2021, 41(3): 38-43. 11 Dias S M, Vieira N J. Concept lattices reduction: Definition, analysis and classification[J]. Expert Systems with Applications, 2015, 42(20): 7084-7097. 12 曹文振, 赖纪瑶, 王延飞. 人工智能时代情报学发展走向之辨——对本体论、感知论、方法论、服务论的再思考[J]. 情报学报, 2020, 39(5): 557-564. 13 van Bunningen A H, Feng L, Apers P M G. Context for ubiquitous data management[C]// Proceedings of the International Workshop on Ubiquitous Data Management. IEEE, 2005: 17-24. 14 Schilit B, Adams N, Want R. Context-aware computing applications[C]// Proceedings of the 1994 First Workshop on Mobile Computing Systems and Applications. IEEE, 1994: 85-90. 15 Krishnamoorthy S. Rover-II: a context-aware middleware for pervasive computing environments[D]. City of College Park: University of Maryland, College Park, 2013. 16 李亚子, 钱庆, 郭文丽, 等. 大规模本体协同构建框架研究与设计[J]. 图书情报工作, 2011, 55(12): 96-100. 17 Cai Y, Chen W H, Leung H F, et al. Context-aware ontologies generation with basic level concepts from collaborative tags[J]. Neurocomputing, 2016, 208: 25-38. 18 李浩君, 张芳. 活动理论视角下移动设备情境感知信息推荐服务研究——基于情境本体建模与规则推理[J]. 情报杂志, 2018, 37(3): 187-192. 19 密阮建驰, 战洪飞, 余军合. 面向企业知识推荐的知识情景建模方法研究[J]. 情报理论与实践, 2016, 39(4): 78-83, 59. 20 张弸, 李强. 基于情景要素适配的高校图书馆资源推荐服务研究[J]. 数字图书馆论坛, 2020(8): 42-47. 21 陈氢, 冯进杰. 多维情境融合的移动情境感知服务系统构建研究[J]. 情报理论与实践, 2018, 41(8): 115-119, 160. 22 孙辉, 王颖, 张智雄. 本体构建中的协同问题研究——以中华人民共和国史本体为例[J]. 情报学报, 2015, 34(9): 958-969. 23 刘杰, 李宏伟, 沈立炜, 等. 分布式本体的构建与一致性维护方法[J]. 计算机应用与软件, 2015, 32(10): 15-20, 77. 24 冯兰萍, 吴凤平. 基于群体行为的协同构建本体可信度研究[J]. 情报杂志, 2015, 34(6): 163-168. 25 毕强, 滕广青. 国外形式概念分析与概念格理论应用研究的前沿进展及热点分析[J]. 现代图书情报技术, 2010(11): 17-23. 26 毕强, 滕广青. 基于概念格的多本体协同知识地图构建研究[J]. 情报学报, 2012, 31(10): 1081-1025. 27 Meditskos G, Kompatsiaris I. iKnow: ontology-driven situational awareness for the recognition of activities of daily living[J]. Pervasive and Mobile Computing, 2017, 40: 17-41. 28 Safyan M, Ul Qayyum Z, Sarwar S, et al. Ontology evolution for personalised and adaptive activity recognition[J]. IET Wireless Sensor Systems, 2019, 9(4): 193-200. 29 李金海, 米允龙, 刘文奇. 概念的渐进式认知理论与方法[J]. 计算机学报, 2019, 42(10): 2233-2250. 30 滕广青, 毕强. 从应然之思到实然之举: 知识的本体与本体化进程[J]. 情报理论与实践, 2011, 34(12): 24-28. 31 Tonella P. Formal concept analysis in software engineering[C]// Proceedings of 26th International Conference on Software Engineering. IEEE, 2004: 743-744. 32 Issarny V, Caporuscio M, Georgantas N. A perspective on the future of middleware-based software engineering[C]// Proceedings of the Conference on Future of Software Engineering. IEEE, 2007: 244-258. 33 Pradeep P, Krishnamoorthy S, Pathinarupothi R K, et al. Leveraging context-awareness for Internet of Things ecosystem: Representation, organization, and management of context[J]. Computer Communications, 2021, 177: 33-50. 34 Lu Z J, Li G Y, Pan Y. A method of meta-context ontology modeling and uncertainty reasoning in SWoT[C]// Proceedings of the 2016 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery. IEEE, 2016: 128-135. 35 Pradeep P, Krishnamoorthy S, Vasilakos A V. A holistic approach to a context-aware IoT ecosystem with Adaptive Ubiquitous Middleware[J]. Pervasive and Mobile Computing, 2021, 72: 101342. 36 闫梦宇, 李金海. 概念格共有与独有属性(对象)的关系研究[J]. 计算机科学与探索, 2019, 13(4): 702-710. 37 范炜. 情报学视角的情境概念及情境观认识[J]. 图书情报工作, 2020, 64(12): 4-10. 38 Smirnov A, Levashova T, Shilov N, et al. A hybrid technology for operational decision support in pervasive environments[C]// Proceedings of the IFIP International Conference on Artificial Intelligence Applications and Innovations. Boston: Springer, 2009: 3-12. 39 王福, 毕强. 移动图书馆场景化信息接受情境聚合适配研究[J]. 情报理论与实践, 2018, 41(6): 22-27, 21. 40 Safyan M, Qayyum Z U, Sarwar S, et al. Ontology-driven semantic unified modelling for concurrent activity recognition (OSCAR)[J]. Multimedia Tools and Applications, 2019, 78(2): 2073-2104. 41 Wang W S, Li W P, Wu Z H, et al. An ontology-based context model for building context-aware services[C]// Proceedings of the 2011 Second International Conference on Intelligent Systems, Modelling and Simulation. IEEE, 2011: 296-299. 42 Smirnov A, Pashkin M, Chilov N, et al. Knowledge source network configuration approach to knowledge logistics[J]. International Journal of General Systems, 2003, 32(3): 251-269. 43 Pradeep P, Krishnamoorthy S, Vasilakos A V. A holistic approach to a context-aware IoT ecosystem with Adaptive Ubiquitous Middleware[J]. Pervasive and Mobile Computing, 2021, 72: 101342. 44 Henricksen K, Indulska J, McFadden T, et al. Middleware for distributed context-aware systems[C]// Proceedings of the OTM Confederated International Conferences: On the Move to Meaningful Internet Systems. Heidelberg: Springer, 2005: 846-863. 45 Stumme G. Formal concept analysis on its way from mathematics to computer science[C]// Proceedings of the International Conference on Conceptual Structures. Heidelberg: Springer, 2002: 2-19. 46 Eisenbarth T, Koschke R, Simon D. Locating features in source code[J]. IEEE Transactions on Software Engineering, 2003, 29(3): 210-224. 47 Tilley T, Cole R, Becker P, et al. A survey of formal concept analysis support for software engineering activities[M]// Formal Concept Analysis. Heidelberg: Springer, 2005: 250-271. 48 Guermah H, Fissaa T, Hafiddi H, et al. An ontology oriented architecture for context aware services adaptation[J]. International Journal of Computer Science Issues, 2014, 11(2): 24-33. |
|
|
|