|
|
Study of Online Healthy Community User Profile Based on Concept Lattice |
Zhang Haitao1,2, Cui Yang1, Wang Dan1, Song Tuo1 |
1. The Management College of Jilin University, Changchun 130022; 2. The Information Resource Research Center of Jilin University, Changchun 130022 |
|
|
Abstract In this work, the user profiles of online health community users were constructed based on concept lattice to reveal the multidimensional features and behavioral rules of different types of user groups in different contexts. Thus, providing the basis for optimizing community services. Python was used to obtain user data of online health community diabetes circle. Further, an online healthy community user profile concept model was constructed taking three aspects into account: user requirements, user roles, and user behavior. ConExp1.3 tools were used to build user segmentation tag concept lattices, and the user groups were divided into three categories using Hasse diagrams to construct the community group user profiles. Mining association rules were used to identify the behavior of the group users in different situations and obtain a complete picture of the user profiles. Clustering using concept lattices can rank the attributes of each group in a hierarchical manner, thereby making it easy to mine the associations between user attributes. This method has distinct advantages in constructing comprehensive and accurate user group profiles. Hence, serving the community through understanding user groups in depth and ensuring accurate services.
|
Received: 11 May 2018
|
|
|
|
[1] 唐晓琳, 余世英, 吴江. 基于URL共现分析的医疗健康类网站竞争态势研究[J]. 情报杂志, 2016, 35(4): 98-104,20. [2] 吴江, 周露莎. 在线医疗社区中知识共享网络及知识互动行为研究[J]. 情报科学, 2017, 35(3): 144-151. [3] 陈慧香, 邵波. 国外图书馆领域用户画像的研究现状及启示[J]. 图书馆学研究, 2017(20): 16-20. [4] 张克永, 李贺. 网络健康社区知识共享的影响因素研究[J]. 图书情报工作, 2017, 61(5): 109-116. [5] 邓胜利, 付少雄. 定性比较分析(QCA)在图书情报学中的应用——以网络社区健康信息搜寻影响因素研究为例[J]. 情报理论与实践, 2017, 40(12): 23-28,11. [6] 刘璇, 汪林威, 李嘉, 等. 在线健康社区中用户回帖行为影响机理研究[J]. 管理科学, 2017, 30(1): 62-72. [7] 李重阳, 翟姗姗, 郑路. 网络健康社区信息需求特征测度——基于时间和主题视角的实证分析[J]. 数字图书馆论坛, 2016(9): 34-42. [8] 吴江, 李姗姗. 在线健康社区用户信息服务使用意愿研究[J]. 情报科学, 2017, 35(4): 119-125. [9] Afifi W A.Theory of motivated information management[M]// The International Encyclopedia of Interpersonal Communication. John Wiley & Sons, Inc., 2015. [10] Bates M J.Toward an integrated model of information seeking and searching[J]. New Review of Information Behavior Research, 2002, 3: 1-15. [11] Wilson T D.Human information behavior[J]. Information Science, 2000, 3(2): 49-55. [12] Evans B M, Chi E H.An elaborated model of social search[J]. Information Processing & Management, 2010, 46(6): 656-678. [13] 袁红, 王琴. 用户信息搜寻模式与数字图书馆可用性评价[J]. 图书情报工作, 2013, 57(13): 22-28,131. [14] 金碧漪, 许鑫. 网络健康社区中的主题特征研究[J]. 图书情报工作, 2015, 59(12): 100-105. [15] Demiris G.The diffusion of virtual communities in health care: concepts and challenges[J]. Patient Education and Counseling, 2006, 62(2): 178-188. [16] Nambisan P.Information seeking and social support in online health communities: impact on patients’ perceived empathy[J]. Journal of the American Medical Informatics Association, 2011, 18(3): 298-304. [17] 智库百科. RFM模型[EB/OL]. [2017-02-22]. http://wiki.mbalib. com/wiki/RFM模型. [18] 滕广青, 毕强. 基于概念格的数字图书馆用户市场细分——数字图书馆用户的概念聚类分析[J]. 现代图书情报技术, 2010(2): 7-11. [19] 李欣. 强关联规则挖掘在智慧图书馆个性化推送服务中的应用研究[J]. 情报科学, 2018, 36(4): 95-99. |
|
|
|