|
|
Group Recommendation in Social Networks Based on Influence Spread |
Ye Jiaxin, Xiong Huixiang, Yi Ming, Liu Ming |
School of Information Management, Central China Normal University, Wuhan 430079 |
|
|
Abstract In social networks, providing personalized recommendation services for group users can effectively improve recommendation efficiency. When conducting group recommendation, most of the existing studies only consider the interests of the user group, but ignore the mutual influence between users in the group. To this end, this paper proposes a social network group recommendation method based on influence spread. Considering the user's own interests and those generated by the influence of core users, the social network group recommendation service is carried out. To prove the effectiveness of the proposed method, data on Weibo “Super Talk” are taken as an example to verify the method. Experiments indicate that combining influence spread can significantly improve the effect of group recommendation.
|
Received: 12 July 2021
|
|
|
|
1 Berkovsky S, Freyne J. Group-based recipe recommendations: analysis of data aggregation strategies[C]// Proceedings of the Fourth ACM Conference on Recommender Systems. New York: ACM Press, 2010: 111-118. 2 Ardissono L, Goy A, Petrone G, et al. INTRIGUE: personalized recommendation of tourist attractions for desktop and hand held devices[J]. Applied Artificial Intelligence, 2003, 17(8/9): 687-714. 3 Kim J K, Kim H K, Oh H Y, et al. A group recommendation system for online communities[J]. International Journal of Information Management, 2010, 30(3): 212-219. 4 朱国玮, 杨玲. 基于遗传算法的群体推荐系统研究[J]. 情报学报, 2009, 28(6): 946-951. 5 李汶华, 熊晓栋, 郭均鹏. 一种基于案例推理和协商的群体推荐算法[J]. 系统工程, 2013, 31(11): 93-98. 6 何军, 刘业政, 王锦坤. 基于社会选择和社会影响的社交网络社群分类与群推荐策略研究[J]. 现代情报, 2018, 38(1): 92-99. 7 Pujahari A, Padmanabhan V. A new grouping method based on social choice strategies for group recommender system[C]// Proceedings of the Conference on Computational Intelligence in Data Mining. New Delhi: Springer, 2015, 1: 325-332. 8 王晰巍, 贾玺智, 刘婷艳, 等. 区块链环境下社交网络用户意见领袖识别与影响力研究[J]. 情报理论与实践, 2021, 44(5): 84-91. 9 Konstas I, Stathopoulos V, Jose J M. On social networks and collaborative recommendation[C]// Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2009: 195-202. 10 Bahari Sojahrood Z, Taleai M. A POI group recommendation method in location-based social networks based on user influence[J]. Expert Systems with Applications, 2021, 171: 114593. 11 王金喆. 社交网络用户影响力分析[J]. 电子技术与软件工程, 2017(17): 28. 12 Ma H, King I, Lyu M R. Learning to recommend with social trust ensemble[C]// Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2009: 203-210. 13 廖大强, 印鉴, 邬依林, 等. 基于兴趣传播的用户相似性计算方法研究[J]. 计算机应用与软件, 2015, 32(10): 95-100, 104. 14 丁兆云, 贾焰, 周斌, 等. 社交网络影响力研究综述[J]. 计算机科学, 2014, 41(1): 48-53. 15 张琳, 谢忠红. 基于聚类的微博用户类型与影响力研究[J]. 情报科学, 2016, 34(8): 57-61. 16 康书龙. 基于用户行为及关系的社交网络节点影响力评价——以微博研究为例[D]. 北京: 北京邮电大学, 2011. 17 刘玲, 杨长春. 一种新的微博社区用户影响力评估算法[J]. 计算机应用与软件, 2017, 34(7): 212-216, 261. 18 Hirsch J E. An index to quantify an individual’s scientific research output[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(46): 16569-16572. 19 王林, 潘陈益, 朱文静. 基于h指数、g指数和p指数的微博影响力评价对比研究[J]. 现代情报, 2018, 38(6): 11-18, 61. 20 王林, 刘继源, 马安进. 基于兴趣衰减的个性化排序算法[J]. 计算机工程, 2017, 43(9): 214-219, 227. |
|
|
|