|
|
Calculation of Author Intimacy Based on Multi-Dimensional Fusion |
Hou Xiang1,2, Huang Jin3, Sang Jun3, Xia Xiaofeng3 |
1.Journal Department, Chongqing University, Chongqing 400044 2.College of Automation, Chongqing University, Chongqing 400044 3.College of Big Data and Software, Chongqing University, Chongqing 400044 |
|
|
Abstract To facilitate the exchange and accurate promotion of academic achievements between different academic paper authors and research teams, a reasonable and effective academic social network needs to be established. As an author network based on literature citation has not been established in current Chinese academic database platforms for community interaction, this paper uses a CNKI data source, a professor of software engineering and information security in a university, as an example. Further, the literature data of 122 scholars who are the professor A's co-authors or with citation relationships from 2014 to 2020 was used as the research object and a citation network of academic authors constructed. Combined with the characteristics of academic social networking, the authors, papers, and citation data were mined, and four dimensions of the intimacy calculation method based on the co-author, subject topic, sensitivity citation of subject sensitivity, and social graph were used to weight the comprehensive intimacy value among the authors in the network. In the experiment, the author relationship map was established by synthesizing the intimacy value, and the author's intimacy level in the network was obtained. The author's network level (weight) was obtained by multiplying the intimacy value and number of published papers. The authors and research teams with the same research level in the mapped network were found, which laid a good foundation for the data promotion of the academic social network.
|
Received: 13 January 2021
|
|
|
|
1 贾新露, 王曰芬. 学术社交网络的概念、特点及研究热点[J]. 图书馆学研究, 2016(5): 7-13. 2 赵杨, 李露琪. 国内外学术社交网络研究现状述评与思考[J]. 情报资料工作, 2016(6): 41-47. 3 周庆山, 杨志维. 学术社交网络用户行为研究进展[J]. 图书情报工作, 2017, 61(16): 38-47. 4 田依林, 刘平平. 合著型论文对学术期刊影响力的贡献度评价研究[J]. 中国科技期刊研究, 2020, 31(6): 725-730. 5 王江盼, 郭强, 刘建国. 基于PageRank的合著论文中作者贡献分配算法[J]. 电子科技大学学报, 2020, 49(6): 918-923. 6 任妮, 周建农. 合著网络加权模式下科研团队的发现与评价研究[J]. 现代图书情报技术, 2015, 31(9): 68-75. 7 卿雅娴, 李锐, 吴华意. 基于论文合著网络的学术社区分析方法研究——以《美国地理学家联合会会刊》为例[J]. 数据分析与知识发现, 2017, 1(4): 20-29. 8 唐璞妮. 基于引文分布与作者合著的学者p指数改进研究[J]. 情报理论与实践, 2020, 43(5): 99-103. 9 琚春华, 陶婉琼, 马希骜. 基于关系圈与个体交互习惯的用户关系强度计算方法[J]. 情报学报, 2019, 38(9): 974-987. 10 于岩, 陈鸿昶, 于洪涛. 基于霍克斯过程的社交网络用户关系强度模型[J]. 电子学报, 2016, 44(6): 1362-1368. 11 孙怡帆, 李赛. 基于相似度的微博社交网络的社区发现方法[J]. 计算机研究与发展, 2014, 51(12): 2797-2807. 12 Ju C H, Tao W Q. A novel relationship strength model for online social networks[J]. Multimedia Tools and Applications, 2017, 76(16): 17577-17594. 13 琚春华, 陈彦, 鲍福光. 融入网络结构与社交习惯的不对称用户关系强度计算[J]. 系统工程理论与实践, 2018, 38(8): 2135-2146. 14 Zhou T, Lü L, Zhang Y C. Predicting missing links via local information[J]. The European Physical Journal B, 2009, 71(4): 623-630. 15 桑军, 樊芳, 夏晓峰, 等. 社交网络基于邻居结点亲密度的信息流控制[J]. 重庆大学学报, 2018, 41(1): 70-77. 16 谷俊, 许鑫. 人文社科数据共享模型的设计与实现——以联盟链技术为例[J]. 情报学报, 2019, 38(4): 354-367. 17 王柳, 汤庸, 杨佐希, 等. 基于学者社交网络的论文与项目关联模型[J]. 计算机应用研究, 2020, 37(5): 1428-1431. 18 Grover A, Leskovec J. node2vec: scalable feature learning for networks[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2016: 855-864. 19 Garlaschelli D, Loffredo M I. Patterns of link reciprocity in directed networks[J]. Physical Review Letters, 2004, 93(26): 268701. 20 Bordes A, Usunier N, Garcia-Durán A, et al. Translating embeddings for modeling multi-relational data[C]// Proceedings of 26th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2013, 2: 2787-2795. 21 Wang Z, Zhang J W, Feng J L, et al. Knowledge graph embedding by translating on hyperplanes[C]// Proceedings of the Tweviy-Eighth AAAI Conforence on Artificial Intelligence. Palo Alto: AAAI Press, 2014: 1112-1119. |
|
|
|