|
|
Method of Discovering Interdisciplinary Knowledge of the National Natural Science Foundation of China Based on Word Embedding: A Case Study on Artificial Intelligence and Information Management |
Wang Weijun1,2, Yao Chang3, Qiao Ziyue1,2, Cui Wenjuan1, Du Yi1,2, Zhou Yuanchun1,2 |
1.Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190 2.University of Chinese Academy of Sciences, Beijing 100049 3.Information Center, National Natural Science Foundation of China, Beijing 100085 |
|
|
Abstract Interdisciplinary research is an important way to promote the resolution of various complex scientific problems. In this paper, the keyword co-occurrence relationship in the disciplines of artificial intelligence and information management in the projects funded by the National Natural Science Foundation of China is used to map the corresponding keywords to the low-dimensional vector space through word2vec correlation model. The keyword vector is used to calculate the relationship between keywords and obtain the quantized keyword co-occurrence relationship. PageRank algorithm is utilized to calculate the importance of keywords in the co-occurrence network. DBSCAN clustering algorithm is used to analyze keyword co-occurrence with an interdisciplinary nature that did not appear in the project, and textual information such as keyword importance is combined with visual information to analyze potential interdisciplinary knowledge. The experiment shows that the model proposed in this study can extract the potential interdisciplinary knowledge well and can filter and sort the interdisciplinary knowledge by using the interdisciplinary keyword co-occurrence relation. The results are interpretable and reasonable and provide new research ideas for exploring methods in discovering interdisciplinary knowledge and identifying its potential growth.
|
Received: 13 August 2020
|
|
|
|
1 Klein J T. A conceptual vocabulary of interdisciplinary science[M]// Practising Interdisciplinarity. Toronto: University of Toronto Press, 2000: 3-24. 2 刘仲林. 交叉科学时代的交叉研究[J]. 科学学研究, 1993, 11(2): 9-16. 3 Morillo F, Bordons M, Gómez I. An approach to interdisciplinarity through bibliometric indicators[J]. Scientometrics, 2001, 51(1): 203-222. 4 Rosenfield P L. The potential of transdisciplinary research for sustaining and extending linkages between the health and social sciences[J]. Social Science & Medicine, 1992, 35(11): 1343-1357. 5 钱学森. 交叉科学: 理论和研究的展望[J]. 机械工程, 1985(3): 48. 6 路甬祥. 学科交叉与交叉科学的意义[J]. 中国科学院院刊, 2005, 20(1): 58-60. 7 Cyranoski D. Artificial intelligence is selecting grant reviewers in China[J]. Nature, 2019, 569(7756): 316-317. 8 Stirling A. A general framework for analysing diversity in science, technology and society[J]. Journal of the Royal Society, Interface, 2007, 4(15): 707-719. 9 Rafols I, Meyer M. Diversity and network coherence as indicators of interdisciplinarity: case studies in bionanoscience[J]. Scientometrics, 2010, 82(2): 263-287. 10 许海云, 尹春晓, 郭婷, 等. 学科交叉研究综述[J]. 图书情报工作, 2015, 59(5): 119-127. 11 杨建林, 孙明军. 利用引文索引数据挖掘学科交叉信息[J]. 情报学报, 2004, 23(6): 672-676. 12 Bordons M, Morillo F, Gómez I. Analysis of cross-disciplinary research through bibliometric tools[M]// Handbook of Quantitative Science and Technology Research. Dordrecht: Springer, 2004: 437-456. 13 Buter R K, Noyons E C M, van Raan A F J. Identification of converging research areas using publication and citation data[J]. Research Evaluation, 2010, 19(1): 19-27. 14 魏建香, 孙越泓, 苏新宁. 基于聚类分析的学科交叉研究[J]. 情报学报, 2010, 29(6): 1066-1073. 15 Wang Q. Measuring interdisciplinarity of a given body of research[C]// Proceedings of ISSI 2015 Istanbul: 15th International Society of Scientometrics and Informetrics Conference. Leuven: ISSI Society, 2015: 372-383. 16 Bromham L, Dinnage R, Hua X. Interdisciplinary research has consistently lower funding success[J]. Nature, 2016, 534(7609): 684-687. 17 Nichols L G. A topic model approach to measuring interdisciplinarity at the National Science Foundation[J]. Scientometrics, 2014, 100(3): 741-754. 18 Garner J, Porter A L, Borrego M, et al. Facilitating social and natural science cross-disciplinarity: assessing the human and social dynamics program[J]. Research Evaluation, 2013, 22(2): 134-144. 19 Wu J, Cai J X, Jin M, et al. Embedding funding consultation in library services: a co-occurrences network analysis of knowledge flow in scientific funding[J]. Library Hi Tech, 2018, 36(3): 378-399. 20 朱蔚彤. 国家自然科学基金委员会资助学科交叉研究模式分析[J]. 中国科学基金, 2006, 20(3): 184-189. 21 周建中, 李晓轩. 国外科研资助机构学科交叉项目的评议机制研究[J]. 科学学与科学技术管理, 2008, 29(2): 9-13. 22 王琦. 国家自然科学基金委交叉学科申请项目评审方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2011. 23 汪雪锋, 张娇, 李佳, 等. 跨学科团队与跨学科研究成果产出——来自科学基金重大研究计划的实证[J]. 科研管理, 2018, 39(4): 157-165. 24 周园春, 王卫军, 乔子越, 等. 科技大数据知识图谱构建方法及应用研究综述[J]. 中国科学: 信息科学, 2020, 50(7): 957-987. 25 王保魁, 吴琳, 胡晓峰, 等. 基于知识图谱的联合作战态势知识表示方法[J]. 系统仿真学报, 2019, 31(11): 2228-2237. 26 Bengio Y, Ducharme R, Vincent P, et al. A neural probabilistic language model[J]. Journal of Machine Learning Research, 2003, 3: 1137-1155. 27 Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2013, 2: 3111-3119. 28 Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space[OL]. (2013-09-07). https://arxiv.org/pdf/1301.3781.pdf. 29 Li Y T, Xu L L, Tian F, et al. Word embedding revisited: a new representation learning and explicit matrix factorization perspective[C]// Proceedings of the 24th International Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2015: 3650-3656. 30 Tshitoyan V, Dagdelen J, Weston L, et al. Unsupervised word embeddings capture latent knowledge from materials science literature[J]. Nature, 2019, 571(7763): 95-98. 31 Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine[J]. Computer Networks and ISDN Systems, 1998, 30(1-7): 107-117. 32 Borah B, Bhattacharyya D K. An improved sampling-based DBSCAN for large spatial databases[C]// Proceedings of the International Conference on Intelligent Sensing and Information Processing. IEEE, 2004: 92-96. 33 冯璐, 冷伏海. 共词分析方法理论进展[J]. 中国图书馆学报, 2006, 32(2): 88-92. 34 He Q. Knowledge discovery through co-word analysis[J]. Library Trends, 1999, 48(1): 133-159. 35 Price D D S. A general theory of bibliometric and other cumulative advantage processes[J]. Journal of the American Society for Information Science, 1976, 27(5): 292-306. 36 毕崇武, 贠婕, 周静虹, 等. 引文内容视角下的引文网络知识流动效应研究[J/OL]. 情报科学. (2020-09-14). https://kns.cnki.net/kcms/detail/22.1264.G2.20200911.1533.018.html. 37 刘云, 程旖婕. 基于文献引证的国际知识流动影响因素探究[J]. 科学学研究, 2018, 36(9): 1623-1631. 38 米捷, 郭彬, 陈怀超, 等. 创新生态系统内的知识势差与知识流动机制[J]. 北京理工大学学报(社会科学版), 2020, 22(6): 78-87. 39 Falvey R, Foster N, Greenaway D. Relative backwardness, absorptive capacity and knowledge spillovers[J]. Economics Letters, 2007, 97(3): 230-234. 40 Sakakibara M. Knowledge sharing in cooperative research and development[J]. Managerial and Decision Economics, 2003, 24(2/3): 117-132. 41 石露. 基于多Agent模拟的虚拟社区用户知识分享行为研究[D]. 武汉: 华中科技大学, 2017. 42 关鹏, 王曰芬, 傅柱. 基于多Agent系统的科研合作网络知识扩散建模与仿真[J]. 情报学报, 2019, 38(5): 512-524. 43 国显达, 那日萨, 高欢, 等. 基于Gaussian LDA的在线评论主题挖掘研究[J]. 情报学报, 2020, 39(6): 630-639. 44 林惠民, 张文辉. 模型检测: 理论、方法与应用[J]. 电子学报, 2002, 30(S1): 1907-1912. 45 卜湛, 伍之昂, 曹杰, 等. 在线评论情感计算与博弈预测[J]. 电子学报, 2015, 43(12): 2530-2535. 46 张宏军, 徐有为, 程恺, 等. 数据包络分析研究热点综述[J]. 计算机工程与应用, 2018, 54(10): 219-228. 47 陈远, 倪超群, 邹晶. 网络社区信息传播的相关理论述评[J]. 图书情报知识, 2008(2): 70-75. 48 孙瑞英. 网络信息窄化的心理学解析[J]. 情报科学, 2010, 28(11): 1625-1629. 49 谭跃进, 邓宏钟. 复杂适应系统理论及其应用研究[J]. 系统工程, 2001, 19(5): 1-6. 50 Mennes J, Pedersen T, Lefever E. Approaching terminological ambiguity in cross-disciplinary communication as a word sense induction task: a pilot study[J]. Language Resources and Evaluation, 2019, 53(4): 889-917. 51 Chen B T, Ding Y, Ma F C. Semantic word shifts in a scientific domain[J]. Scientometrics, 2018, 117(1): 211-226. 52 Jang W, Kwon H, Park Y, et al. Predicting the degree of interdisciplinarity in academic fields: the case of nanotechnology[J]. Scientometrics, 2018, 116(1): 231-254. 53 刘仲林. 现代交叉科学[M]. 杭州: 浙江教育出版社, 1998. 54 马跃, 蔡兵, 于小娟. 交叉学科研究的成长环境与动力机制分析[J]. 研究与发展管理, 2007, 19(5): 105-110, 119. |
|
|
|