|
|
Measurement and Analysis of Disciplinary Discriminative Capacity from an Interdisciplinary Perspective |
Zhang Baolong1,3, Wang Hao1,2, Zhang Wei1,2 |
1.School of Information Management, Nanjing University, Nanjing 210023 2.Jiangsu Key Laboratory of Data Engineering and Knowledge Service, Nanjing 210023 3.School of Information Management, Zhengzhou University of Aeronautics, Zhengzhou 450046 |
|
|
Abstract The continuous development of interdisciplinary integration is gradually weakening the uniqueness of disciplines. Uniqueness is an important feature that reflects the essence and connotation of disciplines, which is of great significance for discipline innovation. This study proposes a new index of discipline discriminative capacity (DDC) to measure the difference of discipline research content to explore the uniqueness and interdisciplinarity of disciplines. Taking the humanities and social science disciplines as examples, DDC is measured by using the bibliographic data of 23 disciplines in 2019, and the differentiation between disciplines is visually analyzed via principal component analysis (PCA) and the proposed ADV (angle-distance based visualization) method. Then, a comparative analysis of the pros and cons of the DDC and discipline diversity indexes is conducted and their correlations are explained. The disciplines' cross-citation network is used to verify their discriminative capacity and discuss the influence of disciplinary intersection on it. The results show that DDC is a good indicator for measuring discipline content differentiation, the proposed ADV method can accurately visualize the disciplines' differences, the DDC and diversity indexes are correlated and can complement each other, and the degree of interdisciplinarity harms the discriminative capacity. The deeper the degree of intersection, the weaker the discriminative capacity, and vice versa.
|
Received: 31 January 2021
|
|
|
|
1 Wagner C S, Roessner J D, Bobb K, et al. Approaches to understanding and measuring interdisciplinary scientific research (IDR): a review of the literature[J]. Journal of Informetrics, 2011, 5(1): 14-26. 2 黄英杰. 理解和把握新学科建设的内涵[N]. 中国社会科学报, 2019-12-19(004). 3 Xu H Y, Guo T, Yue Z H, et al. Interdisciplinary topics of information science: a study based on the terms interdisciplinarity index series[J]. Scientometrics, 2016, 106(2): 583-601. 4 Salton G, Yang C S. On the specification of term values in automatic indexing[J]. Journal of Documentation, 1973, 29(4): 351-372. 5 Salton G, Yang C S, Yu C T. A theory of term importance in automatic text analysis[J]. Journal of the American Society for Information Science, 1975, 26(1): 33-44. 6 王昊, 唐慧慧, 张海潮, 等. 面向学术资源的术语区分能力的测度方法研究[J]. 情报学报, 2019, 38(10): 1078-1091. 7 张宝隆, 王昊, 邓三鸿, 等. 基于差异性视角的期刊区分性测度及分析研究[J]. 情报学报, 2020, 39(3): 284-296. 8 曹玲静, 陈云伟. 学科交叉评价研究进展综述[J]. 情报杂志, 2020, 39(7): 173-180. 9 许海云, 尹春晓, 郭婷, 等. 学科交叉研究综述[J]. 图书情报工作, 2015, 59(5): 119-127. 10 Porter A L, Rafols I. Is science becoming more interdisciplinary? Measuring and mapping six research fields over time[J]. Scientometrics, 2009, 81(3): 719-745. 11 Shannon C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3): 379-423. 12 Brillouin L. Science and information theory[M]. New York: Academic Press, 1956. 13 Stirling A. On the economics and analysis of diversity[R]. SPRU Electronic Working Papers Series. Brighton: University of Sussex, 1998: No.28. 14 Stirling A. A general framework for analysing diversity in science, technology and society[J]. Journal of the Royal Society Interface, 2007, 4(15): 707-719. 15 Rao C R. Diversity and dissimilarity coefficients: a unified approach[J]. Theoretical Population Biology, 1982, 21(1): 24-43. 16 Zhou Q J, Rousseau R, Yang L Y, et al. A general framework for describing diversity within systems and similarity between systems with applications in informetrics[J]. Scientometrics, 2012, 93(3): 787-812. 17 Leinster T, Cobbold C A. Measuring diversity: the importance of species similarity[J]. Ecology, 2012, 93(3): 477-489. 18 Mugabushaka A M, Kyriakou A, Papazoglou T. Bibliometric indicators of interdisciplinarity: the potential of the Leinster-Cobbold diversity indices to study disciplinary diversity[J]. Scientometrics, 2016, 107(2): 593-607. 19 陈赛君, 陈智高. 领域交叉性分析指标与方法新探及其实证研究[J]. 情报学报, 2013, 32(11): 1184-1195. 20 Zhang L, Rousseau R, Gl?nzel W. Diversity of references as an indicator of the interdisciplinarity of journals: taking similarity between subject fields into account[J]. Journal of the Association for Information Science and Technology, 2016, 67(5): 1257-1265. 21 张琳, 刘冬东, 吕琦, 等. 论文学科交叉测度研究: 从全部引文到章节引文[J]. 情报学报, 2020, 39(5): 492-499. 22 Nijssen D, Rousseau R, Van Hecke P. The Lorenz curve: a graphical representation of evenness[J]. Coenoses, 1998, 13(1): 33-38. 23 Buchan I. Calculating the Gini coefficient of inequality[R/OL]. Northwest Institute for BioHealth Informatics, 2002. https://www.nibhi.org.uk/Training/Forms/AllItems.aspx. 24 Leydesdorff L, Rafols I. Indicators of the interdisciplinarity of journals: diversity, centrality, and citations[J]. Journal of Informetrics, 2011, 5(1): 87-100. 25 Rousseau R. The repeat rate: from Hirschman to Stirling[J]. Scientometrics, 2018, 116(1): 645-653. 26 Leydesdorff L, Wagner C S, Bornmann L. Interdisciplinarity as diversity in citation patterns among journals: Rao-Stirling diversity, relative variety, and the Gini coefficient[J]. Journal of Informetrics, 2019, 13(1): 255-269. 27 Leydesdorff L, Ivanova I. The measurement of “interdisciplinarity” and “synergy” in scientific and extra-scientific collaborations[J]. Journal of the Association for Information Science and Technology, 2021, 72(4): 387-402. 28 Porter A L, Cohen A S, David Roessner J, et al. Measuring researcher interdisciplinarity[J]. Scientometrics, 2007, 72(1): 117-147. 29 Bromham L, Dinnage R, Hua X. Interdisciplinary research has consistently lower funding success[J]. Nature, 2016, 534(7609): 684-687. 30 Hernández J M, Dorta-González P. Interdisciplinarity metric based on the co-citation network[J]. Mathematics, 2020, 8(4): 544. 31 章成志, 徐庶睿, 卢超. 利用引文内容监测多学科交叉现象的方法与实证[J]. 图书情报工作, 2016, 60(19): 108-115. 32 徐庶睿, 卢超, 章成志. 术语引用视角下的学科交叉测度——以PLOS ONE上六个学科为例[J]. 情报学报, 2017, 36(8): 809- 820. 33 徐庶睿, 章成志, 卢超. 利用引文内容进行主题级学科交叉类型分析[J]. 图书情报工作, 2017, 61(23): 15-24. 34 徐庶睿, 卢超, 章成志. 学科交叉度的点面关系研究[J]. 图书馆论坛, 2017, 37(10): 64-70. 35 陈红丽, 张自然, 叶佳鑫, 等. 基于ESI数据的学科交叉宏观态势测度研究[J]. 情报科学, 2021, 39(1): 96-103. 36 马瑞敏, 闫晓慧, 申楠. 学科交叉直接测度研究[J]. 情报学报, 2019, 38(7): 688-696. 37 曹嘉君, 王曰芬, 陈盛之, 等. 多学科交叉综合的研究领域内学科间分布状态与演化研究[J]. 情报学报, 2020, 39(5): 459-468. 38 Karlov?ec M, Mladeni? D. Interdisciplinarity of scientific fields and its evolution based on graph of project collaboration and co-authoring[J]. Scientometrics, 2015, 102(1): 433-454. 39 Zhang L, Sun B B, Chinchilla-Rodríguez Z, et al. Interdisciplinarity and collaboration: on the relationship between disciplinary diversity in departmental affiliations and reference lists[J]. Scientometrics, 2018, 117(1): 271-291. 40 Pessoa Junior G J, Dias T M R, Silva T H P, et al. On interdisciplinary collaborations in scientific coauthorship networks: the case of the Brazilian community[J]. Scientometrics, 2020, 124(3): 2341-2360. 41 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 中华人民共和国国家标准: 学科分类与代码GB/T 13745-2009[S]. 北京: 中国标准出版社, 2009. 42 Zhang J, Korfhage R R. DARE: Distance and angle retrieval environment: a tale of the two measures[J]. Journal of the American Society for Information Science, 1999, 50(9): 779-787. 43 Zhang J, Wolfram D. Visualization of term discrimination analysis[J]. Journal of the American Society for Information Science and Technology, 2001, 52(8): 615-627. 44 Zhang J. An experimental investigation on the distance angle integrated similarity measure[J]. Canadian Journal of Information and Library Science, 2008, 32(3): 141-168. 45 Steele T W, Stier J C. The impact of interdisciplinary research in the environmental sciences: a forestry case study[J]. Journal of the American Society for Information Science, 2000, 51(5): 476-484. 46 Rafols I, Meyer M. Diversity and network coherence as indicators of interdisciplinarity: case studies in bionanoscience[J]. Scientometrics, 2010, 82(2): 263-287. |
|
|
|