|
|
Citation Diffusion in the Networks of Scientific Publications: A Case Study on the 2011 Nobel Chemistry Prizewinning Paper |
Min Chao1, Zhang Shuai2, Sun Jianjun1 |
1.School of Information Management, Nanjing University, Nanjing 210023 2.School of Computer Science and Engineering, University of New South Wales, Sydney 2052 |
|
|
Abstract Scientific knowledge diffuses via citation relationships, objectively recording the trajectory of the development and evolution of science. Due to the inextricable connections in scientific knowledge, an isolated view of the impacts and values of scientific knowledge often leads to one-sided perceptions. In this paper, we observe the outputs of scientific knowledge from the perspective of connections. We try to construct the diffusion networks of individual publications through bibliographic relationships such as citing, coupling, and being cited and co-cited, and to examine the literature-embedding network s concepts, measurements, and role in citation diffusion. The case study suggests that the codification of scientific knowledge accompanies the development of its network, and, at the same time, is influenced by the network. Scientific knowledge diffuses from domestic domains to peripheral domains as time goes on. Citing publications could reveal valuable information about the target publication that is not explicitly recorded. The four types of bibliographic relationships may frequently overlap, causing the significant characteristics of “stickiness” and “small world” in citation diffusion. Our quantification of the diffusion networks provides additional objective evidence for evaluating the values of scientific output.
|
Received: 14 May 2019
|
|
|
|
1 闵超, YingDing, 李江, 等. 单篇论著的引文扩散[J]. 情报学报, 2018, 37(4): 341-350. 2 MinC, DingY, LiJ, et al. Innovation or imitation: The diffusion of citations[J]. Journal of the Association for Information Science and Technology, 2018, 69(10): 1271-1282. 3 WuL F, WangD S, EvansJ A. Large teams develop and small teams disrupt science and technology[J]. Nature, 2019, 566(7744): 378-382. 4 RogersE M. Diffusion of innovations[M]. Simon and Schuster, 2010. 5 刘浏, 王东波. 引用内容分析研究综述[J]. 情报学报, 2017, 36(6): 637-643. 6 van LeeuwenT, TijssenR. Interdisciplinary dynamics of modern science: Analysis of cross-disciplinary citation flows[J]. Research Evaluation, 2000, 9(3): 183-187. 7 RiniaE J, van LeeuwenT N, BruinsE, et al. Citation delay in interdisciplinary knowledge exchange[J]. Scientometrics, 2001, 51(1): 293-309. 8 ShiX L, TsengB, AdamicL A. Information diffusion in computer science citation networks[C]// Proceedings of the 3rd International AAAI Conference on Weblogs and Social Media. Palo Alto: AAAI Press, 2009, 1093: 123-142. 9 CaseD O, HigginsG M. How can we investigate citation behavior? A study of reasons for citing literature in communication[J]. Journal of the American Society for Information Science, 2000, 51(7): 635-645. 10 Bar-IlanJ. Citations to the “introduction to informetrics” indexed by WoS, Scopus and Google Scholar[J]. Scientometrics, 2010, 82(3): 495-506. 11 KoushaK, ThelwallM, RezaieS. Assessing the citation impact of books: The role of Google Books, Google Scholar, and Scopus[J]. Journal of the American Society for Information Science and Technology, 2011, 62(11): 2147-2164. 12 宋歌. 学术创新的扩散过程研究[J]. 中国图书馆学报, 2015, 41(1): 62-75. 13 梁永霞, 李正风, 汪海波. 知识生态系统微观机理探析——以DNA双螺旋结构发现的引文网络为例[J]. 情报理论与实践, 2012, 35(9): 18-21, 12. 14 van RaanA F J. Sleeping Beauties in science[J]. Scientometrics, 2004, 59(3): 467-472. 15 CostasR, van LeeuwenT N, van RaanA F J. Is scientific literature subject to a ‘Sell-By-Date’? A general methodology to analyze the ‘durability’ of scientific documents[J]. Journal of the American Society for Information Science and Technology, 2010, 61(2): 329-339. 16 LiJ, ShiD B, ZhaoS X, et al. A study of the “heartbeat spectra” for “sleeping beauties”[J]. Journal of Informetrics, 2014, 8(3): 493-502. 17 MinC, SunJ J, PeiL, et al. Measuring delayed recognition for papers: Uneven weighted summation and total citations[J]. Journal of Informetrics, 2016, 10(4): 1153-1165. 18 杜建, 武夷山. 基于被引速率指标识别睡美人文献及其“王子”——以2014年诺贝尔化学奖得主Stefan Hell的睡美人文献为例[J]. 情报学报, 2015, 34(5): 508-521. 19 WangD S, SongC M, BarabásiA L. Quantifying long-term scientific impact[J]. Science, 2013, 342(6154): 127-132. 20 LiuY X, RousseauR. Towards a representation of diffusion and interaction of scientific ideas: The case of fiber optics communication[J]. Information Processing & Management, 2012, 48(4): 791-801. 21 王亮, 张庆普, 于光, 等. 基于引文网络的知识扩散速度测度研究[J]. 情报学报, 2014, 33(1): 33-44. 22 ValenteT W. Network models of the diffusion of innovations[M]. New York: Hampton Press, 1995. 23 SchellingT C. Micromotives and macrobehavior[M]. New York: W. W. Norton & Company, 1978. 24 BurtR S. The network structure of social capital[J]. Research in Organizational Behavior, 2000, 22: 345-423. 25 GranovetterM S. The strength of weak ties[J]. American Journal of Sociology, 1973, 78(6): 1360-1380. 26 HolmesT J. The diffusion of wal-mart and economies of density[J]. Econometrica, 2011, 79(1): 253-302. 27 KesslerM M. Bibliographic coupling between scientific papers[J]. American Documentation, 1963, 14(1): 10-25. 28 SmallH. Co-citation in the scientific literature: A new measure of the relationship between two documents[J]. Journal of the American Society for Information Science, 1973, 24(4): 265-269. 29 BoyackK W, KlavansR. Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?[J]. Journal of the American Society for Information Science and Technology, 2010, 61(12): 2389-2404. 30 YanE J, DingY. Scholarly network similarities: How bibliographic coupling networks, citation networks, cocitation networks, topical networks, coauthorship networks, and coword networks relate to each other[J]. Journal of the American Society for Information Science and Technology, 2012, 63(7): 1313-1326. 31 ShiX L, LeskovecJ, McFarlandD A. Citing for high impact[C]// Proceedings of the 10th Annual Joint Conference on Digital Libraries. New York: ACM Press, 2010: 49-58. 32 SinatraR, DevilleP, SzellM, et al. A century of physics[J]. Nature Physics, 2015, 11(10): 791-796. 33 RadevD R, JosephM T, GibsonB, et al. A bibliometric and network analysis of the field of computational linguistics[J]. Journal of the Association for Information Science and Technology, 2016, 67(3): 683-706. 34 HummonN P, DereianP. Connectivity in a citation network: The development of DNA theory[J]. Social Networks, 1989, 11(1): 39-63. 35 LiuJ S, KuanC H. A new approach for main path analysis: Decay in knowledge diffusion[J]. Journal of the Association for Information Science and Technology, 2016, 67(2): 465-476. 36 KissI Z, BroomM, CrazeP G, et al. Can epidemic models describe the diffusion of topics across disciplines?[J]. Journal of Informetrics, 2010, 4(1): 74-82. 37 GaoX, GuanJ C. Networks of scientific journals: An exploration of Chinese patent data[J]. Scientometrics, 2009, 80(1): 283-302. 38 RosasS R, SchoutenJ T, CopeM T, et al. Modeling the dissemination and uptake of clinical trials results[J]. Research Evaluation, 2013, 22(3): 179-186. 39 EverettM, BorgattiS P. Ego network betweenness[J]. Social Networks, 2005, 27(1): 31-38. 40 GolosovskyM, SolomonS. Growing complex network of citations of scientific papers: Modeling and measurements[J]. Physical Review E, 2017, 95: 012324. 41 BlondelV D, GuillaumeJ L, LambiotteR, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008, 2008(10): P10008. 42 WattsD J, StrogatzS H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684): 440-442. 43 ErdosP, RényiA. On the evolution of random graphs[J]. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 1960, 5(1): 17-60. 44 ShechtmanD, BlechI, GratiasD, et al. Metallic phase with long-range orientational order and no translational symmetry[J]. Physical Review Letters, 1984, 53(20): 1951-1953. 45 LevineD, SteinhardtP J. Quasicrystals: A new class of ordered structures[J]. Physical Review Letters, 1984, 53(26): 2477-2480. 46 De Solla PriceD J. Little science, big science[M]. New York: Columbia University Press, 1963. 47 WuchtyS, JonesB F, UzziB. The increasing dominance of teams in production of knowledge[J]. Science, 2007, 316(5827): 1036-1039. 48 Milojevi?S. Principles of scientific research team formation and evolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(11): 3984-3989. |
|
|
|