|
|
Definitionand Quantification Methods of Citation Takeoff |
Zhang Jingwen, Sun Jianjun, Min Chao |
School of Information Management, Nanjing University, Nanjing 210023 |
|
|
Abstract During the dynamic process of citation, citation takeoff indicates a turning point in the recognition of academic achievements. Based on previous work, this paper makes a further exploration of the citation takeoff. Five quantitative methods that can be used for “takeoff”-the Artificial Parameters method, the Annual Citation Growth Amount K, the Annual Citation Growth Rate Kr, the Annual Averaged Cited Growth M, and the Annual Average Cited Growth Rate Mr - have been proposed. American Physical Society (APS) citation data were chosen, and the citation curve was divided into four categories by the citation speed to identify the citation takeoff. Finally, the advantages and disadvantages of each method are compared from the perspectives of recognition effect and accuracy, and detailed usage instructions are given. Though the Artificial Parameters method can accurately identify the time-point of “takeoff” and the second or multiple “takeoffs” in the citation curve, it cannot recognize all types of citations, especially in “flash in the pan” literature, which has a low recognition rate. The “delayed recognition” and “spur with long accumulation” literature can be identified by the combination of the Artificial Parameters method and the Annual Citation Growth Rate Kr, while the Annual Average Cited Growth Rate Mr has high accuracy in “leading edge” and “?ash in the pan” literature.
|
Received: 04 December 2018
|
|
|
|
1 尚海茹, 冯长根, 孙良. 用学术影响力评价学术论文——兼论关于学术传承效应和长期引用的两个新指标[J]. 科学通报, 2016, 61(26): 2853-2860. 2 胡明铭, 黄菊芳. 同行评议研究综述[J]. 中国科学基金, 2005, 19(4): 251-253. 3 AminM, MabeM A. Impact factors: Use and abuse[J]. Medicina, 2003, 63(4): 347-354. 4 SunX L, KaurJ, Milojevi?S, et al. Social dynamics of science[J]. Scientific Reports, 2013, 3: 1069. 5 GuimeraR. Team assembly mechanisms determine collaboration network structure and team performance[J]. Science, 2005, 308(5722): 697-702. 6 WallaceM L, LarivièreV, GingrasY. A small world of citations? The influence of collaboration networks on citation practices[J]. PLoS ONE, 2012,7(3): e33339. 7 HirschJ E. An index to quantify an individual’s scientific research output[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(46): 16569-16572. 8 GarfieldE. Journal impact factor: A brief review[J]. Canadian Medical Association Journal, 1999, 161(8): 979-980. 9 GarfieldE. The history and meaning of the journal impact factor[J]. JAMA, 2006,295(1): 90-93. 10 CroninB, MehoL. Using the h-index to rank influential information scientistss[J]. Journal of the American Society for Information Science and Technology, 2006, 57(9): 1275-1278. 11 杜建, 武夷山. 文献引文轨迹:分类及测度[J]. 情报理论与实践, 2015, 38(7): 52-58. 12 MinC, DingY, LiJ, et al. Innovation or imitation: The diffusion of citations[J]. Journal of The Association for Information Science and Technology, 2018, 69(10): 1271-1282. 13 HurdJ M. The citation process: The role and significance of citations in scientific communication[J]. Information Processing & Management, 1985, 21(4): 380. 14 De Solla PriceD. A general theory of bibliometric and other cumulative advantage processes[J]. Journal of the American Society for Information Science, 1976, 27(5): 292-306. 15 GolderP N, TellisG J. Will it ever fly? Modeling the takeoff of really new consumer durables[J]. Marketing Science, 1997, 16(3): 256-270. 16 闵超, YingDing, 李江, 等. 单篇论著的引文扩散[J]. 情报学报, 2018, 37(4): 341-350. 17 van RaanA F J. Sleeping Beauties in science[J]. Scientometrics, 2004, 59(3): 467-472. 18 KeQ, FerraraE, RadicchiF, et al. Defining and identifying Sleeping Beauties in science[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(24): 7426-7431. 19 LiJ, ShiD B. Sleeping beauties in genius work: When were they awakened?[J]. Journal of the Association for Information Science and Technology, 2016, 67(2): 432-440. 20 CostasR, van LeeuwenT N, van RaanA F J. Is scientific literature subject to a ‘Sell-By-Date’? A general methodology to analyze the ‘durability’ of scientific documents[J]. Journal of the American Society for Information Science and Technology, 2010, 61(2): 329-339. 21 Gl?nzelW, SchlemmerB, ThijsB. Better late than never? On the chance to become highly cited only beyond the standard bibliometric time horizon[J]. Scientometrics, 2003, 58(3): 571-586. 22 AgarwalR, BayusB L. The market evolution and sales takeoff of product innovations[J]. Management Science, 2002, 48(8): 1024-1041. 23 TellisG J, StremerschS, YinE. The international takeoff of new products: The role of economics, culture, and country innovativeness[J]. Marketing Science, 2003, 22(2): 188-208. 24 GarberT, GoldenbergJ, LibaiB, et al. From density to destiny: Using spatial dimension of sales data for early prediction of new product success[J]. Marketing Science, 2004, 23(3): 419-428. 25 ChandrasekaranD, TellisG J. Global takeoff of new products: Culture, wealth, or vanishing differences?[J]. Marketing Science, 2008, 27(5): 844-860. 26 HohnischM, PittnauerS, StaufferD. A percolation-based model explaining delayed takeoff in new-product diffusion[J]. Social Science Electronic Publishing, 2008, 17(5): 1001-1017. 27 van EverdingenY, FokD, StremerschS. Modeling global spillover of new product takeoff[J]. Journal of Marketing Research, 2009, 46(5): 637-652. 28 AizenmanJ, SpiegelM M. Takeoffs[J]. Review of Development Economics, 2010, 14(2): 177-196. 29 李春发, 刘凯, 王晟锴. 基于Multi-Agent的政府干预下虚假舆情传播规律与控制决策[J]. 现代情报, 2018, 38(5): 53-59. 30 RednerS. Citation statistics from 110 years of Physical Review[J]. Physics Today, 2005, 58(6): 49-54. 31 CanoV, LindN C. Citation life cycles of ten citation classics[J]. Scientometrics, 1991, 22(2): 297-312. 32 EggheL, ravichandra raoI K. Citation age data and the obsolescence function: Fits and explanations[J]. Information Processing & Management, 1992, 28(2): 201-217. 33 PollmanT. Forgetting and the ageing of scientific publications[J]. Scientometrics, 2000, 47(1): 43-54. 34 AvramescuA. Actuality and obsolescence of scientific literature[J]. Journal of the American Society for Information Science, 1979, 30(5): 296-303. 35 BarberB. Resistance by scientists to scientific discovery[J]. Science, 1961, 134(3479): 596-602. 36 StentG S. Prematurity and uniqueness in scientific discovery[J]. Scientific American, 1972, 227(6): 84-93. 37 WyattH V. Knowledge and prematurity: The journey from transformation to DNA[J]. Perspectives in Biology and Medicine, 1975, 18(2): 149-156. 38 GarfieldE. More delayed recognition. 1. Examples from the genetics of color-blindness, the entropy of short-term-memory, phosphoinositides, and polymer rheology[J]. Current Contents, 1989, 38: 3-8. 39 ColeS. Professional standing and the reception of scientific discoveries[J]. American Journal of Sociology, 1970, 76(2): 286-306. 40 MinC, SunJ J, PeiL, et al. Measuring delayed recognition for papers: Uneven weighted summation and total citations[J]. Journal of Informetrics, 2016, 10(4): 1153-1165. 41 AversaE S. Citation patterns of highly cited papers and their relationship to literature aging - A study of the working literature[J]. Scientometrics, 1985, 7(3-6): 383-389. 42 Gl?nzelW. Seven myths in bibliometrics about facts and fiction in quantitative science studies[J]. Collnet Journal of Scientometrics and Information Management, 2008, 2(1): 9-17. 43 LiJ, ShiD B, ZhaoS X, et al. A study of the “heartbeat spectra” for “sleeping beauties”[J]. Journal of Informetrics, 2014, 8(3): 493-502. 44 WangJ. Citation time window choice for research impact evaluation[J]. Scientometrics, 2013, 94(3): 851-872. 45 杜建, 武夷山. 睡美人与王子文献的识别方法研究[J]. 图书情报工作, 2015, 59(19): 84-92. 46 Gl?nzelW, GarfieldE. The myth of delayed recognition: citation analysis demonstrates that premature discovery, while rare, does occur: Nearly all significant research is normally cited soon after publication[J]. The Scientist, 2004, 18(11): 8-9. 47 EomY H, FortunatoS. Characterizing and modeling citation dynamics[J]. PLoS ONE, 2011, 6(9): e24926. 48 杜建, 武夷山. 基于被引速率指标识别睡美人文献及其“王子”——以2014年诺贝尔化学奖得主Stefan Hell的睡美人文献为例[J]. 情报学报, 2015, 34(5): 508-521. 49 李江, 姜明利, 李玥婷. 引文曲线的分析框架研究——以诺贝尔奖得主的引文曲线为例[J]. 中国图书馆学报, 2014, 40(2): 41-49. |
|
|
|