|
|
A Method of Keywords Association Analysis of Scientific Papers Based on Super-network |
Wu Lei, Liang Xiaohe, Song Hongyan |
Agricultural Information Institute of CAAS, Beijing 100081 |
|
|
Abstract Keywords in scientific papers present attributes of multiple types and multiple relationships. They can be modeled by a super-network with multiple levels and multiple edges. In this paper, there are 4 layers of research object keywords, experimental variety keywords, research purpose keywords, and technical method keywords. Subsequently, the super-network is applied to scientific papers of “regulation of reproductive cells and stem cells in agricultural animals.” The super-network model not only reveals the homogeneous association of a single layer, but also exhibits the hidden heterogeneous associations among multiple layers. As a result, common technical methods, experimental varieties, research objects, and research purposes in the field have been found. At the same time, technical blank spots and application blank spots of technology in the field have also been found, which are likely to be the focus of future research.
|
Received: 26 February 2019
|
|
|
|
1 刘家益, 李鲡瑶, 张智雄, 等. 关键词和被引次数对科技论文自动摘要效果影响研究[J]. 情报学报, 2017, 36(11): 1165-1174. 2 刘智锋, 李信, 程齐凯, 等. 学术文本关键词语义功能数据集构建与分析——以Journal of Informetrics为例[J]. 图书馆论坛, 2019, 39(7): 64-74. 3 方龙, 李信, 黄永, 等. 学术文本的结构功能识别——在关键词自动抽取中的应用[J]. 情报学报, 2017, 36(6): 599-605. 4 巴志超, 李纲, 朱世伟. 共现分析中的关键词选择与语义度量方法研究[J]. 情报学报, 2016, 35(2): 197-207. 5 李海林, 万校基, 林春培. 基于关键词重要性和近邻传播聚类的主题分析研究[J]. 情报学报, 2018, 37(5): 533-542. 6 NagurneyA, DongJ. Supernetworks: Decision-making for the information age[M]. Cheltenham: Elgar Edward Publishing, 2002. 7 武澎, 王恒山. 基于特征向量中心性的社交信息超网络中重要节点的评判[J]. 情报理论与实践, 2014, 37(5): 107-113. 8 武澎, 王恒山. 基于超网络的知识服务能力评价研究[J]. 情报理论与实践, 2012, 35(8): 93-96. 9 王广雷, 吴晓伟, 楼文高, 等. 基于人际竞争情报分析的产业集群信息服务机制研究[J]. 情报杂志, 2013, 32(4): 16-21. 10 张磊, 马静, 李丹丹, 等. 语义社会网络的超网络模型构建及关键节点自动化识别方法研究[J]. 现代图书情报技术, 2016(3): 8-17. 11 潘芳, 鲍雨亭. 基于超网络的微博反腐舆情研究[J]. 情报杂志, 2014, 33(8): 173-177, 172. 12 王丽丽, 陈国宏, 庄彩云, 等. 超网络知识系统定义、内涵及运行机制[J]. 南京航空航天大学学报(社会科学版), 2019, 21(1): 41-46. 13 潘开灵, 王东旭. 零售企业动态竞争性供应链网络均衡分析[J]. 商业经济研究, 2018(14): 113-116. 14 马军, 董琼, 杨德礼. 时间敏感性产品供应链超网络均衡模型[J]. 系统管理学报, 2015, 24(4): 610-616. 15 YamadaT, ImaiK, NakamuraT, et al. A supply chain-transport supernetwork equilibrium model with the behaviour of freight carriers[J]. Transportation Research Part E: Logistics and Transportation Review, 2011, 47(6): 887-907. 16 阚双, 郭伏, 杨童舒. 多组织知识学习超网络模型及其学习绩效研究——面向复杂产品产业集群[J]. 东北大学学报(社会科学版), 2018, 20(6): 578-585. 17 唐洪婷, 李志宏, 秦睿. 基于超网络的大众协同创新社区用户知识模型研究[J]. 管理学报, 2017, 14(6): 859-867. 18 梁晓贺, 田儒雅, 吴蕾, 等. 基于超网络的微博舆情主题挖掘方法[J]. 情报理论与实践, 2017, 40(10): 100-105. 19 李家洋, 等. “跨越2030”农业科技发展战略[M]. 北京: 中国农业科学技术出版社, 2016: 67-70. 20 许海云, 方曙, 付鑫金. 基于特征向量中心度加权的期刊影响因子研究[J]. 情报理论与实践, 2011, 34(11): 108-112. |
|
|
|