|
|
Potential Disruptive Technology Identification Method Based on Graph Representation Learning |
Dou Yongxiang, Kai Qing, Wang Jiamin |
School of Economics and Management, Xidian University, Xi'an 710126 |
|
|
Abstract In addition to disrupting existing technology systems and value networks, disruptive technologies can also drive technological innovation. Most traditional disruptive technology identification methods based on bibliometrics use data from theses and patents to first construct keyword networks and sets and then artificially construct high-level data features for analysis; obtaining all the structural information is difficult, which leads to a decrease in the identification accuracy. This study introduces a semi-supervised disruptive technology identification method based on graph representation learning. First, using data from scientific and technical literature databases, a keyword-weighted network is constructed with the keyword co-occurrence frequency and journal influence. Second, the keyword network vector is obtained by learning anonymous wandering sequences using a backpropagation algorithm. Third, potentially disruptive technologies are identified by comparing the similarity between vector sequences, which can describe similarities in technology evolution, the technology to be identified, and the recognized disruptive technology. Finally, ten technologies were selected as experimental targets from recent strategic planning and prediction reports related to disruptive technologies at home and abroad. Of these technologies, this study could identify three potentially disruptive technologies and determine two pseudo-disruptive technologies to be non-disruptive technologies with pre-given five disruptive technologies.
|
Received: 07 April 2022
|
|
|
|
1 开庆, 窦永香. 颠覆性技术识别研究综述[J]. 情报杂志, 2021, 40(11): 31-38. 2 张金柱, 张晓林. 利用引用科学知识突变识别突破性创新[J]. 情报学报, 2014, 33(3): 259-266. 3 白光祖, 郑玉荣, 吴新年, 等. 基于文献知识关联的颠覆性技术预见方法研究与实证[J]. 情报杂志, 2017, 36(9): 38-44. 4 孙永福, 王礼恒, 孙棕檀, 等. 引发产业变革的颠覆性技术内涵与遴选研究[J]. 中国工程科学, 2017, 19(5): 9-16. 5 Blume M, Oberl?nder A M, R?glinger M, et al. Ex ante assessment of disruptive threats: identifying relevant threats before one is disrupted[J]. Technological Forecasting and Social Change, 2020, 158: 120103. 6 Dixon T, Eames M, Britnell J, et al. Urban retrofitting: identifying disruptive and sustaining technologies using performative and foresight techniques[J]. Technological Forecasting and Social Change, 2014, 89: 131-144. 7 Ganguly A, Nilchiani R, Farr J V. Defining a set of metrics to evaluate the potential disruptiveness of a technology[J]. Engineering Management Journal, 2010, 22(1): 34-44. 8 Drew S A W. Building technology foresight: using scenarios to embrace innovation[J]. European Journal of Innovation Management, 2006, 9(3): 241-257. 9 Burt G. Why are we surprised at surprises? Integrating disruption theory and system analysis with the scenario methodology to help identify disruptions and discontinuities[J]. Technological Forecasting and Social Change, 2007, 74(6): 731-749. 10 Brimley S, Fitzgerald B, Sayler K. Game changers: disruptive technology and U.S. defense strategy[R]. Washington D.C.: Center for a New American Security, 2013. 11 Linton J D. Forecasting the market diffusion of disruptive and discontinuous innovation[J]. IEEE Transactions on Engineering Management, 2002, 49(4): 365-374. 12 Adner R. When are technologies disruptive? A demand-based view of the emergence of competition[J]. Strategic Management Journal, 2002, 23(8): 667-688. 13 Chen C, Zhang J, Guo R S. The D-Day, V-Day, and bleak days of a disruptive technology: a new model for ex-ante evaluation of the timing of technology disruption[J]. European Journal of Operational Research, 2016, 251(2): 562-574. 14 Stelzer B, Meyer-Br?tz F, Schiebel E, et al. Combining the scenario technique with bibliometrics for technology foresight: the case of personalized medicine[J]. Technological Forecasting and Social Change, 2015, 98: 137-156. 15 Momeni A, Rost K. Identification and monitoring of possible disruptive technologies by patent-development paths and topic modeling[J]. Technological Forecasting and Social Change, 2016, 104: 16-29. 16 Cheng Y, Huang L C, Ramlogan R, et al. Forecasting of potential impacts of disruptive technology in promising technological areas: Elaborating the SIRS epidemic model in RFID technology[J]. Technological Forecasting and Social Change, 2017, 117: 170-183. 17 黄鲁成, 成雨, 吴菲菲, 等. 关于颠覆性技术识别框架的探索[J]. 科学学研究, 2015, 33(5): 654-664. 18 Bloodworth I. A search for discriminative linguistic markers in ICT practitioner discourse, for the ex ante identification of disruptive innovation[D]. Wellington: Victoria University of Wellington, 2012. 19 Dotsika F, Watkins A. Identifying potentially disruptive trends by means of keyword network analysis[J]. Technological Forecasting and Social Change, 2017, 119: 114-127. 20 Li X, Xie Q Q, Jiang J J, et al. Identifying and monitoring the development trends of emerging technologies using patent analysis and Twitter data mining: the case of perovskite solar cell technology[J]. Technological Forecasting and Social Change, 2019, 146: 687-705. 21 李乾瑞, 郭俊芳, 黄颖, 等. 基于突变-融合视角的颠覆性技术主题演化研究[J]. 科学学研究, 2021, 39(12): 2129-2139. 22 Chen X L, Han T. Disruptive technology forecasting based on gartner hype cycle[C]// Proceedings of the 2019 IEEE Technology & Engineering Management Conference. Los Angeles: IEEE, 2019: 1-6. 23 Zhang D K, Yin J, Zhu X Q, et al. Network representation learning: a survey[J]. IEEE Transactions on Big Data, 2020, 6(1): 3-28. 24 Shi B X, Yang J, Weninger T, et al. Representation learning in heterogeneous professional social networks with ambiguous social connections[C]// Proceedings of the 2019 IEEE International Conference on Big Data. Los Angeles: IEEE, 2019: 1928-1937. 25 Li D Y, Lin Q, Ma X K. Identification of dynamic community in temporal network via joint learning graph representation and nonnegative matrix factorization[J]. Neurocomputing, 2021, 435: 77-90. 26 Ge S Y, Wu C H, Wu F Z, et al. Graph enhanced representation learning for news recommendation[C]// Proceedings of the Web Conference 2020. New York: ACM Press, 2020: 2863-2869. 27 余传明, 林奥琛, 钟韵辞, 等. 基于网络表示学习的科研合作推荐研究[J]. 情报学报, 2019, 38(5): 500-511. 28 张鑫, 文奕, 许海云. 一种融合表示学习与主题表征的作者合作预测模型[J]. 数据分析与知识发现, 2021, 5(3): 88-100. 29 Nikzad-Khasmakhi N, Balafar M A, Feizi-Derakhshi M R, et al. BERTERS: multimodal representation learning for expert recommendation system with transformers and graph embeddings[J]. Chaos, Solitons & Fractals, 2021, 151: 111260. 30 宁原隆, 周刚, 卢记仓, 等. 一种融合关系路径与实体描述信息的知识图谱表示学习方法[J]. 计算机研究与发展, 2022, 59(9): 1966-1979. 31 陈鑫, 刘喜恩, 吴及. 药物表示学习研究进展[J]. 清华大学学报(自然科学版), 2020, 60(2): 171-180. 32 Fout A, Byrd J, Shariat B, et al. Protein interface prediction using graph convolutional networks[C]// Proceedings of the Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2017: 6530-6539. 33 Gilmer J, Schoenholz S S, Riley P F, et al. Neural message passing for quantum chemistry[C]// Proceedings of the 34th International Conference on Machine Learning. New York: ACM Press, 2017: 1263-1272. 34 孙亚伟, 程龚, 厉肖, 等. 基于图匹配网络的可解释知识图谱复杂问答方法[J]. 计算机研究与发展, 2021, 58(12): 2673-2683. 35 Saxena A, Tripathi A, Talukdar P. Improving multi-hop question answering over knowledge graphs using knowledge base embeddings[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2020: 4498-4507. 36 王一华. 基于IF (JCR)、IF (Scopus)、H指数、SJR值、SNIP值的期刊评价研究[J]. 图书情报工作, 2011, 55(16): 144-148. 37 Micali S, Zhu Z A. Reconstructing Markov processes from independent and anonymous experiments[J]. Discrete Applied Mathematics, 2016, 200: 108-122. 38 Lau J H, Baldwin T. An empirical evaluation of doc2vec with practical insights into document embedding generation[C]// Proceedings of the 1st Workshop on Representation Learning for NLP. Stroudsburg: Association for Computational Linguistics, 2016: 78-86. 39 Yang Z C, Yang D Y, Dyer C, et al. Hierarchical attention networks for document classification[C]// Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2016: 1480-1489. 40 Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space[OL]. (2013-09-07). https://arxiv.org/abs/1301.3781. 41 李海林, 邬先利. 基于时间序列聚类的主题发现与演化分析研究[J]. 情报学报, 2019, 38(10): 1041-1050. 42 Shokoohi-Yekta M, Hu B, Jin H X, et al. Generalizing DTW to the multi-dimensional case requires an adaptive approach[J]. Data Mining and Knowledge Discovery, 2017, 31(1): 1-31. 43 王康, 陈悦, 宋超, 等. 颠覆性技术: 概念辨析与特征分析[J]. 科学学研究, 2022, 40(11): 1937-1946. 44 赵国屏. 合成生物学: 开启生命科学“会聚”研究新时代[J]. 中国科学院院刊, 2018, 33(11): 1135-1149. 45 陈云伟, 陶诚, 周海晨, 等. 基因编辑技术研究进展与挑战[J]. 世界科技研究与发展, 2021, 43(1): 8-23. |
|
|
|