1 许鑫, 施亦龙. UGC模式下的在线健康信息分析[M]. 上海: 上海科学技术文献出版社, 2019. 2 Buchanan S, Jardine C, Ruthven I. Information behaviors in disadvantaged and dependent circumstances and the role of information intermediaries[J]. Journal of the Association for Information Science and Technology, 2019, 70(2): 117-129. 3 胡潜, 李静. 面向用户的行业信息资源聚合研究——以母婴健康行业用户知识社区为例[J]. 图书情报知识, 2018(1): 87-94. 4 王健, 周国民, 王剑, 等. 认知导向信息需求研究综述[J]. 图书情报工作, 2013, 57(10): 136-141. 5 邓小昭, 等. 网络用户信息行为研究[M]. 北京: 科学出版社, 2010. 6 Ruthven I. The language of information need: differentiating conscious and formalized information needs[J]. Information Processing & Management, 2019, 56(1): 77-90. 7 Belkin N J. Anomalous states of knowledge as a basis for information retrieval[J]. Canadian Journal of Information Science, 1980, 5(1): 133-143. 8 Ford N. Information need: a theory connecting information search to knowledge formation by Cole, Charles[J]. Journal of the American Society for Information Science and Technology, 2013, 64(12): 2595-2596. 9 Wilson T D. Models in information behaviour research[J]. Journal of Documentation, 1999, 55(3): 249-270. 10 Zhang Y. Toward a layered model of context for health information searching: an analysis of consumer-generated questions[J]. Journal of the American Society for Information Science and Technology, 2013, 64(6): 1158-1172. 11 Okuhara T, Ishikawa H, Urakubo A, et al. Cancer information needs according to cancer type: a content analysis of data from Japan's largest cancer information website[J]. Preventive Medicine Reports, 2018, 12: 245-252. 12 Draffin C R, Alderdice F A, McCance D R, et al. Exploring the needs, concerns and knowledge of women diagnosed with gestational diabetes: a qualitative study[J]. Midwifery, 2016, 40: 141-147. 13 刘冰, 历鑫, 张赫钊, 等. 网络健康社区中身份转换期女性信息需求主题特征及情感因素研究——以“妈妈网”中“备孕版块”为例[J]. 情报理论与实践, 2019, 42(5): 87-92. 14 Ruthven I, Buchanan S, Jardine C. Isolated, overwhelmed, and worried: young first-time mothers asking for information and support online[J]. Journal of the Association for Information Science and Technology, 2018, 69(9): 1073-1083. 15 Ruthven I, Buchanan S, Jardine C. Relationships, environment, health and development: the information needs expressed online by young first-time mothers[J]. Journal of the Association for Information Science and Technology, 2018, 69(8): 985-995. 16 Peterson-Besse J J, Knoll J E, Horner-Johnson W. Internet networks as a source of social support for women with mobility disabilities during pregnancy[J]. Disability and Health Journal, 2019, 12(4): 722-726. 17 Mniszak C, O’Brien H L, Greyson D, et al. “Nothing’s available”: young fathers’ experiences with unmet information needs and barriers to resolving them[J]. Information Processing & Management, 2020, 57(2): 102081. 18 Pian W J, Song S J, Zhang Y. Consumer health information needs: a systematic review of measures[J]. Information Processing & Management, 2020, 57(2): 102077. 19 Silla C N, Freitas A A. A survey of hierarchical classification across different application domains[J]. Data Mining and Knowledge Discovery, 2011, 22(1): 31-72. 20 Stein R A, Jaques P A, Valiati J F. An analysis of hierarchical text classification using word embeddings[J]. Information Sciences, 2019, 471: 216-232. 21 Shimura K, Li J Y, Fukumoto F. HFT-CNN: learning hierarchical category structure for multi-label short text categorization[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2018: 811-816. 22 Hierarchical text classification CNN[EB/OL]. (2019-04-23). https://github.com/fanway/HCCNN. 23 Gargiulo F, Silvestri S, Ciampi M, et al. Deep neural network for hierarchical extreme multi-label text classification[J]. Applied Soft Computing, 2019, 79: 125-138. 24 Chen T S, Wu W X, Gao Y F, et al. Fine-grained representation learning and recognition by exploiting hierarchical semantic embedding[C]// Proceedings of the 26th ACM International Conference on Multimedia. New York: ACM Press, 2018: 2023-2031. 25 Beyramysoltan S, Abdul-Rahman N H, Musah R A. Call it a “nightshade”—a hierarchical classification approach to identification of hallucinogenic Solanaceae spp. using DART-HRMS-derived chemical signatures[J]. Talanta, 2019, 204: 739-746. 26 李保利. 基于类别层次结构的多层文本分类样本扩展策略[J]. 北京大学学报(自然科学版), 2015, 51(2): 357-366. 27 刘述昌. 大规模层次分类中深层类别的分类算法研究[D]. 兰州: 兰州交通大学, 2017. 28 何伟骏. 基于层次—互斥模型的多标签分类算法的研究与应用[D]. 广州: 中山大学, 2015. 29 李桂华. 基于美国大学参考咨询提问的当代社会科学信息需求研究[J]. 情报学报, 2015, 34(10): 1079-1087. 30 CNPP品牌大数据研究院. 母婴网十大品牌排行榜[EB/OL]. https://www.cnpp.cn/china/list_4919.html. 31 艾媒咨询. 2019中国综合母婴平台监测报告[R/OL]. (2019-09-26). https://www.iimedia.cn/c400/66180.html. 32 Liu Y Q, Yu Y, Bai J B, et al. Development and psychometric properties of the maternal health needs scale in Chinese maternal women[J]. Midwifery, 2020, 81: 102588. 33 Almalik M M A, Mosleh S M. Pregnant women: what do they need to know during pregnancy? A descriptive study[J]. Women and Birth, 2017, 30(2): 100-106.