1 Hacklin F, Raurich V, Marxt C. How incremental innovation becomes disruptive: the case of technology convergence[C]// Proceedings of the 2004 IEEE International Engineering Management Conference. IEEE, 2004: 32-36. 2 翟东升, 刘鹤, 张杰, 等. 一种基于链路预测的技术机会挖掘方法[J]. 情报学报, 2016, 35(10): 1090-1100. 3 Katz M L. Remarks on the economic implications of convergence[J]. Industrial and Corporate Change, 1996, 5(4): 1079-1095. 4 Greenstein S, Khanna T. What does industry convergence mean?[C]// Competing in the Age of Digital Convergence. Boston: Harvard Business School Press, 1997: 201-226. 5 Stieglitz N. Digital dynamics and types of industry convergence: the evolution of the handheld computers market[M]// The New Industrial Dynamics of the New Digital Economy. Social Science Electronic Publishing, 2007: 179-208. 6 Karvonen M, Kassi T, Kapoor R. Technological innovation strategies in converging industries[J]. International Journal of Business Innovation and Research, 2010, 4(5): 391-410. 7 Kim T S, Sohn S Y. Machine-learning-based deep semantic analysis approach for forecasting new technology convergence[J]. Technological Forecasting and Social Change, 2020, 157: 120095. 8 Roco M C, Bainbridge W S. Converging technologies for improving human performance: integrating from the nanoscale[J]. Journal of Nanoparticle Research, 2002, 4: 281-295. 9 Lind J. Convergence: history of term usage and lessons for firm strategies[EB/OL]. [2013-03-05]. http://www.itseurope.org/ITS%20CONF/berlin04/Papers/1_LIND.doc. 10 娄岩, 杨培培, 黄鲁成. 基于专利的技术融合测度方法及实证研究[J]. 科研管理, 2019, 40(11): 134-145. 11 李姝影, 方曙. 测度技术融合与趋势的数据分析方法研究进展[J]. 数据分析与知识发现, 2017, 1(7): 2-12. 12 陈悦, 王康, 宋超, 等. 一种用于技术融合与演化路径探测的新方法: 技术群相似度时序分析法[J]. 情报学报, 2021, 40(6): 565-574. 13 Batagelj V. Efficient algorithms for citation network analysis[OL]. (2003-09-14) [2013-03-05]. http://arxiv.org/pdf/cs/0309023v1. 14 Verspagen B. Mapping technological trajectories as patent citation networks: a study on the history of fuel cell research[J]. Advances in Complex Systems, 2007, 10(1): 93-115. 15 Martinelli A. An emerging paradigm or just another trajectory? Understanding the nature of technological changes using engineering heuristics in the telecommunications switching industry[J]. Research Policy, 2012, 41(2): 414-429. 16 Kim J, Lee S. Forecasting and identifying multi-technology convergence based on patent data: the case of IT and BT industries in 2020[J]. Scientometrics, 2017, 111(1): 47-65. 17 Park I, Yoon B. Technological opportunity discovery for technological convergence based on the prediction of technology knowledge flow in a citation network[J]. Journal of Informetrics, 2018, 12(4): 1199-1222. 18 Rodriguez A, Kim B, Turkoz M, et al. New multi-stage similarity measure for calculation of pairwise patent similarity in a patent citation network[J]. Scientometrics, 2015, 103(2): 565-581. 19 No H J, Park Y. Trajectory patterns of technology fusion: trend analysis and taxonomical grouping in nanobiotechnology[J]. Technological Forecasting and Social Change, 2010, 77(1): 63-75. 20 Ko N, Yoon J, Seo W. Analyzing interdisciplinarity of technology fusion using knowledge flows of patents[J]. Expert Systems with Applications, 2014, 41(4): 1955-1963. 21 Han E J, Sohn S Y. Technological convergence in standards for information and communication technologies[J]. Technological Forecasting and Social Change, 2016, 106: 1-10. 22 Nesta L, Saviotti P P. Coherence of the knowledge base and the firm's innovative performance: evidence from the U.S. pharmaceutical industry[J]. The Journal of Industrial Economics, 2005, 53(1): 123-142. 23 Pennings J M, Puranam P. Market convergence & firm strategy: towards a systematic analysis[EB/OL]. [2013-03-05]. http://userpage.fu-berlin.de/~jmueller/its/conf/berlin04/Papers/1_LIND.doc. 24 陈悦, 王康, 宋超, 等. 基于技术融合视角下的人工智能技术嵌入态势研究[J]. 科学学研究, 2021, 39(8): 1448-1458. 25 Caviggioli F. Technology fusion: identification and analysis of the drivers of technology convergence using patent data[J]. Technovation, 2016, 55/56: 22-32. 26 Lee W S, Han E J, Sohn S Y. Predicting the pattern of technology convergence using big-data technology on large-scale triadic patents[J]. Technological Forecasting and Social Change, 2015, 100: 317-329. 27 李丫丫, 赵玉林. 基于专利的技术融合分析方法及其应用[J]. 科学学研究, 2016, 34(2): 203-211. 28 吴晓燕, 胡雅敏, 陈方. 基于专利共类的技术融合分析框架研究——以合成生物学领域为例[J]. 情报理论与实践, 2021, 44(10): 179-184. 29 王宏起, 夏凡, 王珊珊. 新兴产业技术融合方向预测: 方法及实证[J]. 科学学研究, 2020, 38(6): 1009-1017, 1075. 30 Feng S D, An H Z, Li H J, et al. The technology convergence of electric vehicles: exploring promising and potential technology convergence relationships and topics[J]. Journal of Cleaner Production, 2020, 260: 120992. 31 Preschitschek N, Niemann H, Leker J, et al. Anticipating industry convergence: semantic analyses vs IPC co-classification analyses of patents[J]. Foresight, 2013, 15(6): 446-464. 32 Eilers K, Frischkorn J, Eppinger E, et al. Patent-based semantic measurement of one-way and two-way technology convergence: the case of ultraviolet light emitting diodes (UV-LEDs)[J]. Technological Forecasting and Social Change, 2019, 140: 341-353. 33 王格格, 刘树林. 国际专利分类号间的知识流动与技术间知识溢出测度——基于中国发明授权专利数据[J]. 情报学报, 2020, 39(11): 1162-1170. 34 王鑫, 赵蕴华, 高芳. 基于分类号和引文的专利相似度测量方法研究[J]. 数字图书馆论坛, 2015(1): 57-62. 35 刘知远, 孙茂松, 林衍凯, 等. 知识表示学习研究进展[J]. 计算机研究与发展, 2016, 53(2): 247-261. 36 Ietswaart R, Gyori B M, Bachman J A, et al. GeneWalk identifies relevant gene functions for a biological context using network representation learning[J]. Genome Biology, 2021, 22(1): 55. 37 李枫林, 柯佳. 基于深度学习的文本表示方法[J]. 情报科学, 2019, 37(1): 156-164. 38 Mikolov T, Sutskever I, Kai C, et al. Distributed representations of words and phrases and their compositionality[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2013: 3111-3119. 39 Le Q V, Mikolov T. Distributed representations of sentences and documents[C]// Proceedings of the 31st International Conference on International Conference on Machine Learning. JMLR.org, 2014: II-1188-II-1196. 40 Tang D Y, Qin B, Liu T. Document modeling with gated recurrent neural network for sentiment classification[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2015: 1422-1432. 41 Yang Z C, Yang D Y, Dyer C, et al. Hierarchical attention networks for document classification[C]// Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2016: 1480-1489. 42 Mahata D, Kuriakose J, Shah R R, et al. Key2Vec: automatic ranked keyphrase extraction from scientific articles using phrase embeddings[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2018, 2: 634-639. 43 Pagliardini M, Gupta P, Jaggi M. Unsupervised learning of sentence embeddings using compositional n-gram features[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2018, 1: 528-540. 44 Saha T K, Joty S, Al Hasan M. Con-S2V: a generic framework for incorporating extra-sentential context into Sen2Vec[C]// Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer, 2017: 753-769. 45 Tian H, Zhuo H H. Paper2vec: citation-context based document distributed representation for scholar recommendation[OL]. (2017-03-20). https://arxiv.org/pdf/1703.06587.pdf. 46 Jain S, Howe B, Yan J Q, et al. Query2Vec: an evaluation of NLP techniques for generalized workload analytics[OL]. (2018-02-02). https://arxiv.org/pdf/1801.05613.pdf. 47 Han J L, Song Y, Zhao W X, et al. hyperdoc2vec: distributed representations of hypertext documents[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2018, 1: 2384-2394. 48 张金柱, 于文倩, 刘菁婕, 等. 基于网络表示学习的科研合作预测研究[J]. 情报学报, 2018, 37(2): 132-139. 49 Perozzi B, Al-Rfou R, Skiena S. DeepWalk: online learning of social representations[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2014: 701-710. 50 Grover A, Leskovec J. node2vec: scalable feature learning for networks[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2016: 855-864. 51 Tang J, Qu M, Wang M Z, et al. LINE: large-scale information network embeddin[C]// Proceedings of the 24th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2015: 1067-1077. 52 Wang D X, Cui P, Zhu W W. Structural deep network embedding[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2016: 1225-1234. 53 Hamilton W L, Ying R, Leskovec J. Inductive representation learning on large graphs[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2017: 1025-1035. 54 丁钰, 魏浩, 潘志松, 等. 网络表示学习算法综述[J]. 计算机科学, 2020, 47(9): 52-59. 55 Tang J, Qu M, Mei Q Z. PTE: predictive text embedding through large-scale heterogeneous text networks[C]// Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2015: 1165-1174. 56 Dong Y X, Chawla N V, Swami A. metapath2vec: scalable representation learning for heterogeneous networks[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2017: 135-144. 57 Shi C, Hu B B, Zhao W X, et al. Heterogeneous information network embedding for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(2): 357-370. 58 Yang C, Liu Z Y, Zhao D L, et al. Network representation learning with rich text information[C]// Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2015: 2111-2117. 59 Zhang D K, Yin J, Zhu X Q, et al. Homophily, structure, and content augmented network representation learning[C]// Proceedings of the 2016 IEEE 16th International Conference on Data Mining. IEEE, 2016: 609-618. 60 Sun X F, Guo J, Ding X, et al. A general framework for content-enhanced network representation learning[OL]. (2016-10-17). https://arxiv.org/pdf/1610.02906.pdf. 61 Li C Z, Wang S Z, Yang D J, et al. PPNE: property preserving network embedding[C]// Proceedings of the International Conference on Database Systems for Advanced Applications. Cham: Springer, 2017: 163-179. 62 Ganguly S, Pudi V. Paper2vec: combining graph and text information for scientific paper representation[C]// Proceedings of the European Conference on Information Retrieval. Cham: Springer, 2017: 383-395. 63 Pan S R, Wu J, Zhu X Q, et al. Tri-party deep network representation[C]// Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2016: 1895-1901. 64 熊回香, 李晓敏, 杜瑾. 基于学术关键词与共被引的学者推荐研究[J]. 情报学报, 2021, 40(7): 725-733. 65 叶佳鑫, 熊回香, 童兆莉, 等. 在线医疗社区中面向医生的协同标注研究[J]. 数据分析与知识发现, 2020, 4(6): 118-128. 66 Voorhees E M. Variations in relevance judgments and the measurement of retrieval effectiveness[J]. Information Processing & Management, 2000, 36(5): 697-716. 67 谷勇浩, 黄博琪, 王继刚, 等. 基于半监督深度学习的木马流量检测方法[J]. 计算机研究与发展, 2022, 59(6): 1329-1342. 68 沈国际, 周燕辉. 2000—2017年无人机专利技术发展态势分析[J]. 国防科技, 2018, 39(6): 82-87. 69 Li K, Zou C Q, Bu S H, et al. Multi-modal feature fusion for geographic image annotation[J]. Pattern Recognition, 2018, 73: 1-14.