摘要当前,针对知识网络的链路预测主要是基于网络拓扑结构的相似性,很少考虑作者的研究领域,导致信息利用不充分等问题,因此本文提出了双层知识网络的链路预测框架hypernet2vec。双层知识网络,即作者合著关系网络和学术领域关系网络,利用网络表示学习,分别将两层网络中的节点映射到低维的向量空间,再输入到专门设计的卷积神经网络中计算并进行链路预测。与经典的链路预测指标如RA指标、LP指标和LRW指标等相比,hypernet2vec模型预测的AUC(area under curve)值取得了显著的提升,平均提升幅度达11.17%。文章还从情报产生层面和复杂系统层面,对模型发生作用的深层机理进行了探讨。
曹志鹏, 潘定, 潘启亮. 基于表示学习的双层知识网络链路预测[J]. 情报学报, 2021, 40(2): 135-144.
Cao Zhipeng, Pan Ding, Pan Qiliang. Link Prediction in Two-layer Knowledge Network Based on Network Representation Learning. 情报学报, 2021, 40(2): 135-144.
1 刘向. 知识网络的形成与演化[M]. 武汉: 武汉大学出版社, 2014: 5-8. 2 靖继鹏, 毕强. 情报学理论基础[M]. 长春: 吉林科学技术出版社, 1996: 26-44. 3 杨建林. 情报学基本原理的再认识[J]. 情报学报, 2019, 38(11): 1212-1221. 4 Lü L, Zhou T. Link prediction in complex networks: a survey[J]. Physica A: Statistical Mechanics and Its Applications, 2011, 390(6): 1150-1170. 5 张斌, 马费成. 科学知识网络中的链路预测研究述评[J]. 中国图书馆学报, 2015, 41(3): 99-113. 6 张金柱, 韩涛, 王小梅. 作者-关键词二分网络中的合著关系预测研究[J]. 图书情报工作, 2016, 60(21): 74-80. 7 项欣, 祁彬斌, 朱学芳. 二分属性知识网络的链路预测[J]. 情报理论与实践, 2019, 42(11): 150-155. 8 陈文杰, 许海云. 一种基于多元数据融合的引文网络知识表示方法[J]. 情报理论与实践, 2020, 43(1): 150-154, 134. 9 Cao S S, Lu W, Xu Q K. GraRep: learning graph representations with global structural information[C]// Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. New York: ACM Press, 2015: 891-900. 10 涂存超, 杨成, 刘知远, 等. 网络表示学习综述[J]. 中国科学: 信息科学, 2017, 47(8): 980-996. 11 张金柱, 于文倩, 刘菁婕, 等. 基于网络表示学习的科研合作预测研究[J]. 情报学报, 2018, 37(2): 132-139. 12 Tu C C, Zhang W C, Liu Z Y, et al. Max-margin DeepWalk: discriminative learning of network representation[C]// Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2016: 3889-3895. 13 Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[C]// Proceedings of the 5th International Conference on Learning Representations. La Jolla: ICLR, 2017. 14 Yang C, Liu Z Y, Zhao D L, et al. Network representation learning with rich text information[C] // Proceedings of the 24th International Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2015: 2111-2117. 15 Tu C C, Liu H, Liu Z Y, et al. CANE: context-aware network embedding for relation modeling[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2017: 1722-1731. 16 Tu C C, Zhang Z Y, Liu Z Y, et al. TransNet: translation-based network representation learning for social relation extraction[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2017: 2864-2870. 17 Grover A, Leskovec J. node2vec: scalable feature learning for networks[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2016: 855-864. 18 Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space[OL]. (2013-09-07). https://arxiv.org/pdf/1301.3781v3.pdf. 19 Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2013, 2: 3111-3119. 20 Le Q, Mikolov T. Distributed representations of sentences and documents[J]. Proceedings of Machine Learning Research, 2014, 32(2): 1188-1196. 21 张斌. 科研合作网络的链路预测研究[M]. 北京: 科学出版社, 2018: 125-140.