Construction of Knowledge Graph of Industry Chain Based on Natural Language Processing
Mao Ruibin1,2, Zhu Jing2, Li Aiwen2, Zhou Yiwen2, Pan Binqiang2, Yue Lin3
1.Center for Studies of Information Resources, Wuhan University, Wuhan 430072 2.Shenzhen Securities Information Co., Ltd, Shenzhen 518022 3.Department of Management and Economics, Tianjin University, Tianjin 300110
毛瑞彬, 朱菁, 李爱文, 周倚文, 潘斌强, 岳琳. 基于自然语言处理的产业链知识图谱构建[J]. 情报学报, 2022, 41(3): 287-299.
Mao Ruibin, Zhu Jing, Li Aiwen, Zhou Yiwen, Pan Binqiang, Yue Lin. Construction of Knowledge Graph of Industry Chain Based on Natural Language Processing. 情报学报, 2022, 41(3): 287-299.
1 龚勤林. 产业链延伸的价格提升研究[J]. 价格理论与实践, 2004(3): 33-34. 2 陈鸿宇. 区域国际竞争力与广东产业整合[J]. 南方经济, 2002(4): 28-31. 3 李新安. 中部制造业承接产业转移实施产业链整合的优势行业选择[J]. 经济经纬, 2013, 30(2): 77-82. 4 庄晋财, 吴碧波. 西部地区产业链整合的承接产业转移模式研究[J]. 求索, 2008(10): 5-8. 5 刘国丰. 基于产业链的投资组合策略研究[D]. 上海: 上海交通大学, 2010. 6 朱静雯, 方爱华, 陆朦朦. 产业链演化视域下的凤凰传媒投资战略研究[J]. 现代出版, 2017(1): 16-19. 7 俞林, 康灿华, 王龙. 互联网金融监管博弈研究: 以P2P网贷模式为例[J]. 南开经济研究, 2015(5): 126-139. 8 叶林, 吴烨. 金融市场的“穿透式”监管论纲[J]. 法学, 2017(12): 12-21. 9 周磊, 张玉峰. 基于专利情报分析的企业合作竞争模式研究[J]. 情报学报, 2013, 32(6): 593-600. 10 冯雪飞, 何健, 袁红梅. 基于专利组合分析方法改进的企业技术竞争情报研究[J]. 情报杂志, 2018, 37(3): 79-85, 115. 11 陈思, 赵宇翔, 朱庆华. 基于技术链的产业技术竞争情报服务模式探析[J]. 情报理论与实践, 2020, 43(5): 31-37. 12 王超, 许海云, 董坤, 等. 基于创新链的产业竞争情报分析框架与应用研究——以国内基因工程疫苗产业为例[J]. 情报理论与实践, 2018, 41(1): 87-93. 13 黄立业, 赵辉, 王坚, 等. 基于专利分析的产业竞争情报分析框架研究[J]. 情报科学, 2015, 33(4): 59-63. 14 迈克尔·波特. 竞争战略[M]. 陈小悦, 译. 北京: 华夏出版社, 2005. 15 方友亮, 孙斌, 张晓阳, 等. 基于SCP范式的产业竞争情报分析框架构建[J]. 图书情报工作, 2015, 59(3): 95-102. 16 曹玉婷, 张忠榕, 林甫. 基于双钻石模型的产业竞争情报分析框架研究[J]. 情报探索, 2015(12): 20-25, 31. 17 Bollacker K, Cook R, Tufts P. Freebase: a shared database of structured general human knowledge[C]// Proceedings of the 22nd National Conference on Artificial intelligence. Palo Alto: AAAI Press, 2007: 1962-1963. 18 Auer S, Bizer C, Kobilarov G, et al. DBpedia: a nucleus for a Web of open data[C]// Proceedings of the International Semantic Web Conference/Asian Semantic Web Conference. Heidelberg: Springer, 2007: 722-735. 19 Suchanek F M, Kasneci G, Weikum G. YAGO: a large ontology from Wikipedia and WordNet[J]. Journal of Web Semantics, 2008, 6(3): 203-217. 20 Niu X, Sun X R, Wang H F, et al. Zhishi.me - weaving Chinese linking open data[C]// Proceedings of the International Semantic Web Conference. Heidelberg: Springer, 2011: 205-220. 21 Xu B, Xu Y, Liang J Q, et al. CN-DBpedia: a never-ending Chinese knowledge extraction system[C]// Proceedings of the International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems. Cham: Springer, 2017: 428-438. 22 Qi C L, Song Q, Zhang P Z, et al. Cn-MAKG: China meteorology and agriculture knowledge graph construction based on semi-structured data[C]// Proceedings of the 2018 IEEE/ACIS 17th International Conference on Computer and Information Science. IEEE, 2018: 692-696. 23 王仁武, 袁毅, 袁旭萍. 基于深度学习与图数据库构建中文商业知识图谱的探索研究[J]. 图书与情报, 2016(1): 110-117. 24 Chen P H, Lu Y, Zheng V W, et al. An automatic knowledge graph construction system for K-12 education[C]// Proceedings of the Fifth Annual ACM Conference on Learning at Scale. New York: ACM Press, 2018: 1-4. 25 杨玉基, 许斌, 胡家威, 等. 一种准确而高效的领域知识图谱构建方法[J]. 软件学报, 2018, 29(10): 2931-2947. 26 阮彤, 王梦婕, 王昊奋, 等. 垂直知识图谱的构建与应用研究[J]. 知识管理论坛, 2016, 1(3): 226-234. 27 张德政, 谢永红, 李曼, 等. 基于本体的中医知识图谱构建[J]. 情报工程, 2017, 3(1): 35-42. 28 许闲, 张航. 保险行业的知识图谱构建及应用[J]. 中国保险, 2019(3): 24-29. 29 漆桂林, 高桓, 吴天星. 知识图谱研究进展[J]. 情报工程, 2017, 3(1): 4-25. 30 Bekoulis G, Deleu J, Demeester T, et al. Joint entity recognition and relation extraction as a multi-head selection problem[J]. Expert Systems with Applications, 2018, 114: 34-45. 31 Chi R J, Wu B, Hu L M, et al. Enhancing joint entity and relation extraction with language modeling and hierarchical attention[C]// Proceedings of the Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint International Conference on Web and Big Data. Cham: Springer, 2019: 314-328. 32 Zhou X, Liu L P, Luo X D, et al. Joint entity and relation extraction based on reinforcement learning[J]. IEEE Access, 2019, 7: 125688-125699. 33 Duan S Y, Fokoue A, Srinivas K, et al. A clustering-based approach to ontology alignment[C]// Proceedings of the International Semantic Web Conference. Heidelberg: Springer, 2011: 146-161. 34 Chen Z Q, Kalashnikov D V, Mehrotra S. Exploiting context analysis for combining multiple entity resolution systems[C]// Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 2009: 207-218. 35 Jiang Y, Wang X M, Zheng H T. A semantic similarity measure based on information distance for ontology alignment[J]. Information Sciences, 2014, 278: 76-87. 36 Hao Y C, Zhang Y Z, He S Z, et al. A joint embedding method for entity alignment of knowledge bases[C]// Proceedings of the China Conference on Knowledge Graph and Semantic Computing. Singapore: Springer, 2016: 3-14. 37 Devlin J, Chang M W, Lee K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2019: 4171-4186. 38 Gage P. A new algorithm for data compression[J]. The C Users Journal, 1994, 12(2): 23-38. 39 Griffiths D. A pragmatic approach to Spearman’s rank correlation coefficient[J]. Teaching Statistics, 1980, 2(1): 10-13.