Sentiment Classification of Financial Microblog Text Based on the Model of OCC and LSTM
Wu Peng1,2, Li Ting1,2, Tong Chong1,2, Shen Si1,2
1.School of Economics and Management, Nanjing University of Science & Technology, Nanjing 210094 2.Jiangsu Collaborative Innovation Center of Social Safety Science and Technology, Nanjing 210094
摘要为了解决财经微博文本中网民情感状态转移的时序数据分析问题,本文提出一个基于认知情感评价模型(Ortony,Clore & Collins,OCC)和长短期记忆模型(long short term memory,LSTM)的财经微博文本情感分类模型(OCC-LSTM)。基于OCC模型从网民认知角度建立情感规则,对财经微博文本进行情感标注,并作为LSTM模型进行深度学习的训练集;基于LSTM模型,使用深度学习中的TensorFlow框架和Keras模块建立相应的实验模型,进行海量微博数据情感分类,并结合13家上市公司3年的微博文本数据进行实证研究和模型验证对比。实证研究结果发现本文提出的模型取得了89.45%的准确率,高于采用传统的机器学习方式的支持向量机方法(support vector machine,SVM)和基于深度学习的半监督RAE方法(semi-supervised recursive auto encoder)。
吴鹏, 李婷, 仝冲, 沈思. 基于OCC模型和LSTM模型的财经微博文本情感分类研究[J]. 情报学报, 2020, 39(1): 81-89.
Wu Peng, Li Ting, Tong Chong, Shen Si. Sentiment Classification of Financial Microblog Text Based on the Model of OCC and LSTM. 情报学报, 2020, 39(1): 81-89.
1 Kennedy A, Inkpen D. Sentiment classification of movie reviews using contextual valence shifters[J]. Computational Intelligence, 2006, 22(2): 110-125. 2 滕飞, 郑超美, 李文. 基于长短期记忆多维主题情感倾向性分析模型[J]. 计算机应用, 2016, 36(8): 2252-2256. 3 Pi?eiro-Chousa J R, á López-Cabarcos M, Pérez-Pico A M. Examining the influence of stock market variables on microblogging sentiment[J]. Journal of Business Research, 2016, 69(6): 2087-2092. 4 Shen D H, Liu L B, Zhang Y J. Quantifying the cross-sectional relationship between online sentiment and the skewness of stock returns[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 490: 928-934. 5 Ruan Y F, Durresi A, Alfantoukh L. Using Twitter trust network for stock market analysis[J]. Knowledge-Based Systems, 2018, 145: 207-218. 6 Chen M Y, Chen T H. Modeling public mood and emotion: Blog and news sentiment and socio-economic phenomena[J]. Future Generation Computer Systems, 2019, 96: 692-699. 7 梁军, 柴玉梅, 原慧斌, 等. 基于极性转移和LSTM递归网络的情感分析[J]. 中文信息学报, 2015, 29(5): 152-159. 8 Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. 9 Ortony A, Clore G L, Collins A. The cognitive structure of emotions: Factors affecting the intensity of emotions[J]. Contemporary Sociology, 1988, 18(6): 2147-2153. 10 Sutskever I, Vinyals O, Le Q V. Sequence to sequence learning with neural networks[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014, 2: 3104-3112. 11 Li J W, Luong M T, Jurafsky D. A hierarchical neural autoencoder for paragraphs and documents[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2015: 1106-1115. 12 Nguyen N K, Le A C, Pham H T. Deep bi-directional long short-term memory neural networks for sentiment analysis of social data[C]// Proceedings of the 5th International Symposium on Integrated Uncertainty in Knowledge Modelling and Decision Making. Cham: Springer, 2016: 255-268. 13 Wang X, Liu Y C, Sun C J, et al. Predicting polarities of tweets by composing word embeddings with long short-term memory[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2015: 1343-1353. 14 Cheng J J, Zhang X, Li P, et al. Exploring sentiment parsing of microblogging texts for opinion polling on chinese public figures[J]. Applied Intelligence, 2016, 45(2): 429-442. 15 陈鹏. 基于深度语义特征的情感分析研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. 16 Adam C, Herzig A, Longin D. A logical formalization of the OCC theory of emotions[J]. Synthese, 2009, 168(2): 201-248. 17 Clore G L, Palmer J. Affective guidance of intelligent agents: How emotion controls cognition[J]. Cognitive Systems Research, 2009, 10(1): 21-30. 18 Jaques P A, Vicari R M. A BDI approach to infer student’s emotions in an intelligent learning environment[J]. Computers & Education, 2007, 49(2): 360-384. 19 Bartneck C. Integrating the OCC model of emotions in embodied characters[C]// Proceedings of the Workshop on Virtual Conversational Characters: Applications, Methods, and Research Challenges. Melbourne, 2002. 20 Roberts K, Roach M A, Johnson J, et al. EmpaTweet: Annotating and detecting emotions on Twitter[C]// Proceedings of the Eighth International Conference on Language Resources and Evaluation, 2012: 3806-3813. 21 Yalcin ?N, DiPaolaS. A computational model of empathy for interactive agents[J]. Biologically Inspired Cognitive Architectures, 2018, 26: 20-25. 22 Deng J J, Leung C H, Mengoni P, et al. Emotion recognition from human behaviors using attention model[C]// Proceedings of the First International Conference on Artificial Intelligence and Knowledge Engineering. New York: IEEE Computer Society, 2018: 249-253. 23 Deng J, Leung C, Li Y X. Beyond big data of human behaviors: Modeling human behaviors and deep emotions[C]// Proceedings of the Conference on Multimedia Information Processing and Retrieval. New York: IEEE Computer Society, 2018: 282-286. 24 梁军, 柴玉梅, 原慧斌, 等. 基于深度学习的微博情感分析[J]. 中文信息学报, 2014, 28(5): 155-161. 25 朱少杰. 基于深度学习的文本情感分类研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.