唐晓波, 谭明亮, 李诗轩, 郑杜. 企业破产预测系统模型构建及实现研究[J]. 情报学报, 2019, 38(10): 1051-1065.
Tang Xiaobo, Tan Mingliang, Li Shixuan, Zheng Du. Research on Construction and Implementation of a Corporate Bankruptcy Prediction System Model. 情报学报, 2019, 38(10): 1051-1065.
1 SunJ, LiH, HuangQ H, et al. Predicting financial distress and corporate failure: A review from the state-of-the-art definitions, modeling, sampling, and featuring approaches[J]. Knowledge-Based Systems, 2014, 57: 41-56. 2 YuQ, MicheY, SéverinE, et al. Bankruptcy prediction using extreme learning machine and financial expertise[J]. Neurocomputing, 2014, 128: 296-302. 3 GordiniN. A genetic algorithm approach for SMEs bankruptcy prediction: Empirical evidence from Italy[J]. Expert Systems with Applications, 2014, 41(14): 6433-6445. 4 WangM J, ChenH L, LiH Z, et al. Grey wolf optimization evolving kernel extreme learning machine: Application to bankruptcy prediction[J]. Engineering Applications of Artificial Intelligence, 2017, 63: 54-68. 5 王利娜. 企业破产预测实证模型评述[J]. 河北经贸大学学报, 2012, 33(3): 51-54. 6 BeaverW H. Financial ratios as predictors of failure[J]. Journal of Accounting Research, 1966, 4: 71-111. 7 AltmanE I. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy[J]. The Journal of Finance, 1968, 23(4): 589-609. 8 BellovaryJ L, GiacominoD E, AkersM D. A review of bankruptcy prediction studies: 1930 to present[J]. Journal of Financial Education, 2007, 33: 1-42. 9 duJardin P. Failure pattern-based ensembles applied to bankruptcy forecasting[J]. Decision Support Systems, 2018, 107: 64-77. 10 LiH, SunJ. Gaussian case-based reasoning for business failure prediction with empirical data in China[J]. Information Sciences, 2009, 179(1-2): 89-108. 11 ChenN, RibeiroB, ChenA. Financial credit risk assessment: a recent review[J]. Artificial Intelligence Review, 2016, 45(1): 1-23. 12 AlakaH A, OyedeleL O, OwolabiH A, et al. Systematic review of bankruptcy prediction models: Towards a framework for tool selection[J]. Expert Systems with Applications, 2018, 94: 164-184. 13 WangG, ChenG, ChuY. A new random subspace method incorporating sentiment and textual information for financial distress prediction[J]. Electronic Commerce Research and Applications, 2018, 29: 30-49. 14 宋彪, 朱建明, 李煦. 基于大数据的企业财务预警研究[J]. 中央财经大学学报, 2015(6): 55-64. 15 VolkovA, BenoitD F, van den PoelD. Incorporating sequential information in bankruptcy prediction with predictors based on Markov for discrimination[J]. Decision Support Systems, 2017, 98: 59-68. 16 陈艺云. 大数据时代基于文本信息的信用风险管理研究[J]. 金融理论与实践, 2017(4): 14-20. 17 CecchiniM, AytugH, KoehlerG J, et al. Making words work: Using financial text as a predictor of financial events[J]. Decision Support Systems, 2010, 50(1): 164-175. 18 MayewW J, SethuramanM, VenkatachalamM. MD&A disclosure and the firm’s ability to continue as a going concern[J]. The Accounting Review, 2015, 90(4): 1621-1651. 19 ChenM Y. Bankruptcy prediction in firms with statistical and intelligent techniques and a comparison of evolutionary computation approaches[J]. Computers & Mathematics with Applications, 2011, 62(12): 4514-4524. 20 Zi?baM, TomczakS K, TomczakJ M. Ensemble boosted trees with synthetic features generation in application to bankruptcy prediction[J]. Expert Systems with Applications, 2016, 58: 93-101. 21 KirkosE. Assessing methodologies for intelligent bankruptcy prediction[J]. Artificial Intelligence Review, 2015, 43(1): 83-123. 22 AhnH, KimK J. Bankruptcy prediction modeling with hybrid case-based reasoning and genetic algorithms approach[J]. Applied Soft Computing, 2009, 9(2): 599-607. 23 OlsonD L, DelenD, MengY Y. Comparative analysis of data mining methods for bankruptcy prediction[J]. Decision Support Systems, 2012, 52(2): 464-473. 24 徐绪堪, 蒋勋, 苏新宁. 面向知识服务的知识组织框架体系构建[J]. 情报学报, 2013, 32(12): 1278-1287. 25 Serrano-GuerreroJ, OlivasJ A, RomeroF P, et al. Sentiment analysis: A review and comparative analysis of web services[J]. Information Sciences, 2015, 311: 18-38. 26 GuoL, ShiF, TuJ. Textual analysis and machine leaning: Crack unstructured data in finance and accounting[J]. The Journal of Finance and Data Science, 2016, 2(3): 153-170. 27 LoughranT, McDonaldB. When is a liability not a liability? Textual analysis, dictionaries, and 10-ks[J]. The Journal of Finance, 2011, 66(1): 35-65. 28 BodnarukA, LoughranT, McDonaldB. Using 10-K text to gauge financial constraints[J]. Journal of Financial and Quantitative Analysis, 2015, 50(4): 623-646. 29 LoughranT, McDonaldB. Textual analysis in accounting and finance: A survey[J]. Journal of Accounting Research, 2016, 54(4): 1187-1230. 30 SlotaM, LeiteJ, SwiftT. On updates of hybrid knowledge bases composed of ontologies and rules[J]. Artificial Intelligence, 2015, 229: 33-104. 31 StuderR, BenjaminsV R, FenselD. Knowledge engineering: Principles and methods[J]. Data & Knowledge Engineering, 1998, 25(1-2): 161-197. 32 薛建武, 勾苗, 吴拓. 基于SKOS的国防科学技术叙词表向本体的转换研究[J]. 情报学报, 2011, 30(3): 310-317. 33 王昊, 谷俊, 苏新宁. 本体驱动的知识管理系统模型及其应用研究[J]. 中国图书馆学报, 2013, 39(2): 98-110. 34 GruberT R. A translation approach to portable ontology specifications[J]. Knowledge Acquisition, 1993, 5(2): 199-220. 35 李雨轩, 黄奇, 陈雪, 等. 利用领域本体提高信息对称性的研究[J]. 情报学报, 2018, 37(7): 678-685. 36 TangX L, XiaoM Q, HuB, et al. Exchanging knowledge for test-based diagnosis using OWL Ontologies and SWRL Rules[J]. Procedia Computer Science, 2018, 131: 847-854. 37 BarthM E, BeaverW H, LandsmanW R. Relative valuation roles of equity book value and net income as a function of financial health[J]. Journal of Accounting and Economics, 1998, 25(1): 1-34. 38 徐雷. 本体评估研究进展[J]. 情报学报, 2016, 35(7): 772-784. 39 BreimanL, FriedmanJ H, OlshenR A, et al. Classification and regression trees[M]. Belmont: Wadsworth, 1984. 40 Brezigar-MastenA, MastenI. CART-based selection of bankruptcy predictors for the logit model[J]. Expert Systems with Applications, 2012, 39(11): 10153-10159. 41 WangG, MaJ, YangS L. An improved boosting based on feature selection for corporate bankruptcy prediction[J]. Expert Systems with Applications, 2014, 41(5): 2353-2361. 42 TsaiM F, WangC J, ChienP C. Discovering finance keywords via continuous-space language models[J]. ACM Transactions on Management Information Systems, 2016, 7(3): 1-17. 43 KrausM, FeuerriegelS. Decision support from financial disclosures with deep neural networks and transfer learning[J]. Decision Support Systems, 2017, 104: 38-48.