李海林, 邬先利. 基于时间序列聚类的主题发现与演化分析研究[J]. 情报学报, 2019, 38(10): 1041-1050.
Li Hailin and Wu Xianli. Research on Topic Discovery and Evolution Based on Time Series Clustering. 情报学报, 2019, 38(10): 1041-1050.
1 王平. 基于层次概率主题模型的科技文献主题发现及演化[J]. 图书情报工作, 2014, 58(22): 70-77. 2 de la Hoz-CorreaA, Mu?oz-LeivaF, BakuczM. Past themes and future trends in medical tourism research: A co-word analysis[J]. Tourism Management, 2018, 65: 200-211. 3 MryglodO, HolovatchY, KennaR, et al. Quantifying the evolution of a scientific topic: Reaction of the academic community to the Chornobyl disaster[J]. Scientometrics, 2016, 106(3): 1151-1166. 4 de la Hoz-CorreaA, Mu?oz-LeivaF, BakuczM. Past themes and future trends in medical tourism research: A co-word analysis[J]. Tourism Management, 2018, 65: 200-211. 5 郭红梅, 孔贝贝, 张智雄. 基于多重文本关系图中clique子团聚类的主题识别方法研究[J]. 情报学报, 2017, 36(5): 433-442. 6 HajjemM, LatiriC. Combining IR and LDA topic modeling for filtering Microblogs[J]. Procedia Computer Science, 2017, 112: 761-770. 7 刘自强, 王效岳, 白如江. 多维主题演化分析模型构建与实证研究[J]. 情报理论与实践, 2017, 40(3): 92-98. 8 BryX, RedontP, VerronT, et al. THEME-SEER: A multidimensional exploratory technique to analyze a structural model using an extended covariance criterion[J]. Journal of Chemometrics, 2012, 26(5): 158-169. 9 王小华, 徐宁, 谌志群. 基于共词分析的文本主题词聚类与主题发现[J]. 情报科学, 2011, 29(11): 1621-1624. 10 PavlinekM, PodgorelecV. Text classification method based on self-training and LDA topic models[J]. Expert Systems with Applications, 2017, 80: 83-93. 11 廖海涵, 王曰芬, 关鹏. 微博舆情传播周期中不同传播者的主题挖掘与观点识别[J]. 图书情报工作, 2018, 62(19): 77-85. 12 SuhS, ChooJ, LeeJ, et al. L-EnsNMF: Boosted local topic discovery via ensemble of nonnegative matrix factorization[C]// Proceedings of the International Conference on Data Mining. New York: IEEE, 2016: 479-488. 13 YangZ, MichailidisG. A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data[J]. Bioinformatics, 2016, 32(1): 1-8. 14 ZongL L, ZhangX C, ZhaoL, et al. Multi-view clustering via multi-manifold regularized non-negative matrix factorization[J]. Neural Networks, 2017, 88: 74-89. 15 AbidinT F, YusufB, UmranM. Singular Value Decomposition for dimensionality reduction in unsupervised text learning problems[C]// Proceedings of the International Conference on Education Technology and Computer. New York: IEEE, 2010: V4-422-V4-426. 16 XueS F, JiangH, DaiL R, et al. Speaker adaptation of hybrid NN/HMM model for speech recognition based on singular value decomposition[J]. Journal of Signal Processing Systems, 2016, 82(2): 175-185. 17 Gerk?i?S, PregeljB, PerneM, et al. Model predictive control of ITER plasma current and shape using singular-value decomposition[J]. Fusion Engineering and Design, 2018, 129: 158-163. 18 李海林, 万校基, 林春培. 基于关键词重要性和近邻传播聚类的主题分析研究[J]. 情报学报, 2018, 33(5): 533-542. 19 王沙沙, 丰景春, 薛松, 等. 基于知识图谱的PPP研究热点主题分析[J]. 科技管理研究, 2017, 37(17): 167-173. 20 FreyB J, DueckD. Clustering by passing messages between data points[J]. Science, 2007, 315(5814): 972-976. 21 朱红, 丁世飞, 许新征. 基于改进属性约简的细粒度并行AP聚类算法[J]. 计算机研究与发展, 2012, 49(12): 2638-2644. 22 FreyB J, DueckD. Clustering by passing messages between data points[J]. Science, 2007, 315(5814): 972-976. 23 刘晓勇, 付辉. 一种快速AP聚类算法[J]. 山东大学学报(工学版), 2011, 41(4): 20-23. 24 李海林, 梁叶. 基于数值符号和形态特征的时间序列相似性度量方法[J]. 控制与决策, 2017, 32(3): 451-458. 25 KajitaS, ItakuraF. Subband-Autocorrelation analysis and its application for speech recognition[C]// Proceedings of the International Conference on Acoustics, Speech, and Signal Processing. New York: IEEE, 1994, 2: II/193-II/196. 26 李海林, 梁叶. 基于动态时间弯曲的股票时间序列联动性研究[J]. 数据采集与处理, 2016, 31(1): 117-129. 27 DiazM, HenriquezP, FerrerM A, et al. Stability-based system for bearing fault early detection[J]. Expert Systems with Applications, 2017, 79: 65-75. 28 SuryantoC H, XueJ H, FukuiK. Randomized time warping for motion recognition[J]. Image and Vision Computing, 2016, 54: 1-11. 29 KhalidM I, AlotaibyT N, AldosariS A, et al. Epileptic MEG spikes detection using amplitude thresholding and dynamic time warping[J]. IEEE Access, 2017, 5: 11658-11667. 30 ThakurM R, KhilnaniD R, GuptaK, et al. Detection and prevention of botnets and malware in an enterprise network[J]. International Journal of Wireless and Mobile Computing, 2012, 5(2): 144-153. 31 DürrenmattD J, del GiudiceD, RieckermannJ. Dynamic time warping improves sewer flow monitoring[J]. Water Research, 2013, 47(11): 3803-3816. 32 李海林, 梁叶, 王少春. 时间序列数据挖掘中的动态时间弯曲研究综述[J]. 控制与决策, 2018, 33(8): 1345-1353. 33 穆颖丽. 论高校图书馆知识管理及其实施策略[J]. 图书情报知识, 2003(6): 22-24. 34 张治河, 丁华, 孙丽杰, 等. 创新型城市与产业创新系统[J]. 科学学与科学技术管理, 2006, 27(12): 150-155.