Research on Construction and Application of a Knowledge Discovery System Based on Intelligent Processing of Large-scale Governmental Documents
Zhao Hong1,2, Wang Fang1, Wang Xiaoyu1, Zhang Weichong1, Yang Jing1
1. Department of Information Resources Management, Business School, Nankai University, Tianjin 300071; 2. CETC Big Data Research Institute Co., Ltd., Guiyang 550081
赵洪, 王芳, 王晓宇, 张维冲, 杨京. 基于大规模政府公文智能处理的知识发现及应用研究[J]. 情报学报, 2018, 37(8): 805-812.
Zhao Hong, Wang Fang, Wang Xiaoyu, Zhang Weichong, Yang Jing. Research on Construction and Application of a Knowledge Discovery System Based on Intelligent Processing of Large-scale Governmental Documents. 情报学报, 2018, 37(8): 805-812.
[1] 赵国俊. 电子政务教程[M]. 北京: 中国人民大学出版社, 2004: 62. [2] 中共中央办公厅, 国务院办公厅. 党政机关公文处理工作条例[EB/OL]. [2018-04-28]. http://www.gov.cn/zhengce/2013-02/22/ content_2640088.htm. [3] 上海市档案局. 上海自贸试验区开启电子文件归档和电子档案“单套制”管理新模式[EB/OL]. [2018-04-28]. http://pdda.pudong.gov.cn/pddaxxw_pddt/2016-11-18/Detail_775080.htm. [4] 国务院办公厅. 国务院办公厅关于印发政务信息系统整合共享实施方案的通知[EB/OL]. [2018-04-28]. http://www.gov.cn/ zhengce/content/2017-05/18/content_5194971.htm. [5] 国务院办公厅. 国务院办公厅关于促进电子政务协调发展的指导意见[EB/OL]. [2018-04-28]. http://www.xinjiang.gov.cn/ 2015/07/07/632.html. [6] 国家电子文件管理部际联席会议办公室. 党政机关电子公文系列标准[EB/OL]. [2018-04-28]. http://sca.gov.cn/sca/ztpd/ 2017-04/19/content_1012651.shtml. [7] 陆伟, 黄永, 程齐凯. 学术文本的结构功能识别——功能框架及基于章节标题的识别[J]. 情报学报, 2014, 33(9): 979-985. [8] 黄永, 陆伟, 程齐凯, 等. 学术文本的结构功能识别——基于段落的识别[J]. 情报学报, 2016, 35(3): 530-538. [9] Semeniuta S, Severyn A, Barth E.A hybrid convolutional variational autoencoder for text generation[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2017: 627-637. [10] Rush A M, Chopra S, Weston J.A neural attention model for abstractive sentence summarization[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2015: 379-389. [11] Vinyals O, Kaiser L, Koo T, et al.Grammar as a foreign language[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015, 2: 2773-2781. [12] Paulus R, Xiong C, Socher R. A deep reinforced model for abstractive summarization[J]. arXiv preprint arXiv:1705. 04304, 2017. [13] Reiplinger M, Schäfer U, Wolska M.Extracting glossary sentences from scholarly articles: A comparative evaluation of pattern bootstrapping and deep analysis[C]// Proceedings of the ACL-2012 Special Workshop on Rediscovering 50 Years of Discoveries. Stroudsburg: Association for Computational Linguistics, 2012: 55-65. [14] Graves A, Mohamed A R, Hinton G.Speech recognition with deep recurrent neural networks[C]// Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, Canada, 2013: 6645-6649. [15] Huang Z, Xu W, Yu K. Bidirectional LSTM-CRF models for sequence tagging[J]. arXiv preprint arXiv:1508. 01991, 2015. [16] Chiu J P C, Nichols E. Named entity recognition with bidirectional LSTM-CNNs[J]. Transactions of the Association for Computational Linguistics, 2016, 4: 357-370. [17] Ma X Z, Hovy E.End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2016: 1064-1074. [18] Qian F, Sha L, Chang B, et al. Syntax aware LSTM model for Chinese semantic role labeling[J]. arXiv preprint arXiv:1704. 00405, 2017. [19] Wang Z, Jiang T S, Chang B B, et al.Chinese semantic role labeling with bidirectional recurrent neural networks[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2015: 1626-1631. [20] 杨选选, 张蕾. 基于语义角色和概念图的信息抽取模型[J]. 计算机应用, 2010, 30(2): 411-414. [21] 鲍静, 张勇进. 政府部门数据治理: 一个亟需回应的基本问题[J]. 中国行政管理, 2017(4): 28-34. [22] 黄璜. 转换政府数据治理思维[J]. 领导科学, 2018(9): 21. [23] 杨冰之. 提升政府数据治理能力, 加快智慧社会建设[N]. 无锡日报, 2018-06-06(A12).