|
|
Impact of Data Factor Marketization on Disruptive Technologies |
Wang Haisen1,2, Li Gang1,2 |
1.Centre for Studies of Information Resources, Wuhan University, Wuhan 430072 2.School of Information Management, Wuhan University, Wuhan 430072 |
|
|
Abstract Under the backdrop of an era characterized by accelerating global transformation, the technological competition among major powers has become increasingly intense. Disruptive technologies have ascended to become a core component of the national security strategy of China and serve as a critical driver for building an innovative nation and modernizing national governance capabilities and systems in this new era. This study focuses on the institutional practices of market-oriented reforms for data factors in China, and it utilizes the construction of data trading platforms as a quasi-natural experimental setting. Based on data from Shanghai and Shenzhen A-share listed companies (spanning from 2014 to 2023), we constructed multi-period difference-in-differences models and causal mediation models to systematically analyze the impact of data factor marketization on corporate disruptive technologies and its underlying mechanisms. The findings reveal that data factor marketization significantly promotes corporate disruptive technologies. In this process, marketization breaks down data silos and monopoly barriers, expands the “data resource pool” for enterprises to acquire new knowledge, enhances the technological capabilities of corporate data, optimizes the efficiency of data factor allocation among enterprises, and creates greater resource opportunities for disruptive technologies. Further analysis identifies that “hidden barriers” formed by data protectionism remain a significant challenge. Although current market mechanisms can reduce the cost of acquiring existing knowledge, they provide limited incentives for high-end disruptive technologies that require breakthroughs in cognitive boundaries. The conclusions of this study offer new mechanisms for incentivizing disruptive technologies and provide novel insights for improving data factor markets.
|
Received: 12 September 2024
|
|
|
|
1 马费成, 卢慧质, 吴逸姝. 数据要素市场的发展及运行[J]. 信息资源管理学报, 2022, 12(5): 4-13. 2 洪银兴, 任保平. 论数字经济与社会主义市场经济的深度融合[J]. 中国工业经济, 2024(5): 5-19. 3 徐翔, 赵墨非. 数据资本与经济增长路径[J]. 经济研究, 2020, 55(10): 38-54. 4 Müller O, Fay M, vom Brocke J. The effect of big data and analytics on firm performance: an econometric analysis considering industry characteristics[J]. Journal of Management Information Systems, 2018, 35(2): 488-509. 5 Wu L, Hitt L, Lou B W. Data analytics, innovation, and firm productivity[J]. Management Science, 2020, 66(5): 2017-2039. 6 谢康, 夏正豪, 肖静华. 大数据成为现实生产要素的企业实现机制: 产品创新视角[J]. 中国工业经济, 2020(5): 42-60. 7 Jones C I, Tonetti C. Nonrivalry and the economics of data[J]. American Economic Review, 2020, 110(9): 2819-2858. 8 徐翔, 赵墨非, 李涛, 等. 数据要素与企业创新: 基于研发竞争的视角[J]. 经济研究, 2023, 58(2): 39-56. 9 刘洋, 董久钰, 魏江. 数字创新管理: 理论框架与未来研究[J]. 管理世界, 2020, 36(7): 198-217, 219. 10 Nambisan S, Lyytinen K, Majchrzak A, et al. Digital innovation management: reinventing innovation management research in a digital world[J]. MIS Quarterly, 2017, 41(1): 223-238. 11 Nambisan S, Wright M, Feldman M. The digital transformation of innovation and entrepreneurship: progress, challenges and key themes[J]. Research Policy, 2019, 48(8): 103773. 12 Yoo Y, Boland R J, Lyytinen K, et al. Organizing for innovation in the digitized world[J]. Organization Science, 2012, 23(5): 1398-1408. 13 江小涓. 数字时代的技术与文化[J]. 中国社会科学, 2021(8): 4-34, 204. 14 胡增玺, 马述忠. 市场一体化对企业数字创新的影响——兼论数字创新衡量方法[J]. 经济研究, 2023, 58(6): 155-172. 15 蔡跃洲, 马文君. 数据要素对高质量发展影响与数据流动制约[J]. 数量经济技术经济研究, 2021, 38(3): 64-83. 16 蔡跃洲. 中国共产党领导的科技创新治理及其数字化转型——数据驱动的新型举国体制构建完善视角[J]. 管理世界, 2021, 37(8): 30-46. 17 Abowd J M, Schmutte I M. An economic analysis of privacy protection and statistical accuracy as social choices[J]. American Economic Review, 2019, 109(1): 171-202. 18 Begenau J, Farboodi M, Veldkamp L. Big data in finance and the growth of large firms[J]. Journal of Monetary Economics, 2018, 97: 71-87. 19 Varian H. Artificial intelligence, economics, and industrial organization[M]// The Economics of Artificial Intelligence: An Agenda. Chicago: University of Chicago Press, 2018: 399-419. 20 Arrieta-Ibarra I, Goff L, Jiménez-Hernández D, et al. Should we treat data as labor? Moving beyond “free”[J]. AEA Papers and Proceedings, 2018, 108: 38-42. 21 Acquisti A, Taylor C, Wagman L. The economics of privacy[J]. Journal of Economic Literature, 2016, 54(2): 442-492. 22 Fairfield J A T, Engel C. Privacy as a public good[J]. Duke Law Journal, 2015, 65(3): 385-457. 23 Acemoglu D, Makhdoumi A, Malekian A, et al. Too much data: prices and inefficiencies in data markets[J]. American Economic Journal: Microeconomics, 2022, 14(4): 218-256. 24 Farboodi M, Veldkamp L. A growth model of the data economy[R]. Cambridge: National Bureau of Economic Research, 2021: No.w28427. 25 陈楠, 蔡跃洲, 马文君. 企业数据技术能力对市值和利润的影响——基于大数据专利的机制检验和互补性投入分析[J]. 财贸经济, 2024, 45(1): 106-123. 26 刘雅君, 张雅俊. 数据要素市场培育的制约因素及其突破路径[J]. 改革, 2023(9): 21-33. 27 吴江, 袁一鸣, 贺超城, 等. 数据要素交易多边平台研究: 现状、进路与框架[J]. 信息资源管理学报, 2024, 14(3): 4-20. 28 吴涵, 郭凯明. 双循环视角下要素市场化配置、产业结构转型与劳动生产率增长[J]. 经济研究, 2023, 58(9): 61-78. 29 Hsieh C T, Klenow P J. Misallocation and manufacturing TFP in China and India[J]. The Quarterly Journal of Economics, 2009, 124(4): 1403-1448. 30 盖庆恩, 朱喜, 史清华. 劳动力市场扭曲、结构转变和中国劳动生产率[J]. 经济研究, 2013, 48(5): 87-97, 111. 31 Brandt L, Tombe T, Zhu X D. Factor market distortions across time, space and sectors in China[J]. Review of Economic Dynamics, 2013, 16(1): 39-58. 32 Wu L F, Wang D S, Evans J A. Large teams develop and small teams disrupt science and technology[J]. Nature, 2019, 566(7744): 378-382. 33 吴可凡, 王伟, 张世玉, 等. 技术不连续性视角下颠覆性技术识别方法研究[J]. 情报理论与实践, 2022, 45(10): 125-131. 34 罗素平, 寇翠翠, 金金, 等. 基于离群专利的颠覆性技术预测——以中药专利为例[J]. 情报理论与实践, 2019, 42(7): 165-170. 35 梁镇涛, 毛进, 李纲. 融合“科学-技术”知识关联的高颠覆性专利预测方法[J]. 情报学报, 2023, 42(6): 649-662. 36 陈育新, 卢俊, 韩毅. 基于专利文献的颠覆性技术识别研究——以人工智能为例[J]. 情报学报, 2022, 41(11): 1124-1133. 37 Bower J L, Christensen C M. Disruptive technologies: catching the wave[J]. Harvard Business Review, 1995, 73(1): 43-53. 38 陈强远, 赵浩云, 林思彤, 等. 中国高质量技术创新: 情境叙事与测度体系[J]. 管理世界, 2024, 40(5): 23-41. 39 赵放, 李文婷, 马婉莹. 数据要素市场化能否促进数字产业集聚——来自准自然实验的证据[J]. 浙江学刊, 2024(3): 143-152. 40 张珂涵, 张古, 赵兴罗. 数据要素赋能对人力资本升级的作用机制分析——基于国家级大数据综合试验区数据[J]. 科技管理研究, 2024, 44(3): 174-182. 41 郑国强, 张馨元, 赵新宇. 数据要素市场化能否促进企业绿色创新?——基于城市数据交易平台设立的准自然实验[J]. 上海财经大学学报, 2024, 26(3): 33-48. 42 Alacevich C, Zejcirovic D. Does violence against civilians depress voter turnout? Evidence from Bosnia and Herzegovina[J]. Journal of Comparative Economics, 2020, 48(4): 841-865. 43 江艇. 因果推断经验研究中的中介效应与调节效应[J]. 中国工业经济, 2022(5): 100-120. 44 杨刚强, 王海森, 范恒山, 等. 数字经济的碳减排效应: 理论分析与经验证据[J]. 中国工业经济, 2023(5): 80-98. 45 项后军, 张清俊. 中国的显性存款保险制度与银行风险[J]. 经济研究, 2020, 55(12): 165-181. 46 杨兴全, 任小毅, 杨征. 国企混改优化了多元化经营行为吗?[J]. 会计研究, 2020(4): 58-75. 47 Funk R J, Owen-Smith J. A dynamic network measure of technological change[J]. Management Science, 2017, 63(3): 791-817. 48 赵涛, 张智, 梁上坤. 数字经济、创业活跃度与高质量发展——来自中国城市的经验证据[J]. 管理世界, 2020, 36(10): 65-76. 49 杨刚强, 王海森, 岳子洋, 等. 客户数字化转型、供应商碳减排与碳信息披露迎合[J]. 中国工业经济, 2024(8): 99-117. 50 杨俊, 李小明, 黄守军. 大数据、技术进步与经济增长——大数据作为生产要素的一个内生增长理论[J]. 经济研究, 2022, 57(4): 103-119. 51 徐舒, 杜鹏程, 吴明琴. 最低工资与劳动资源配置效率——来自断点回归设计的证据[J]. 经济学(季刊), 2020, 19(1): 143-164. 52 吴非, 胡慧芷, 林慧妍, 等. 企业数字化转型与资本市场表现——来自股票流动性的经验证据[J]. 管理世界, 2021, 37(7): 130-144, 10. 53 Petrin A, Sivadasan J. Estimating lost output from allocative inefficiency, with an application to Chile and firing costs[J]. Review of Economics and Statistics, 2013, 95(1): 286-301. 54 Christensen C M. The innovator’s dilemma: when new technologies cause great firms to fail[M]. Boston: Harvard Business Review Press, 1997. 55 Si S, Chen H, Liu W, et al. Disruptive innovation, business model and sharing economy: the bike-sharing cases in China[J]. Management Decision, 2021, 59(11): 2674-2692. 56 Williamson P J, Guo B, Yin E. When can Chinese competitors catch up? Market and capability ladders and their implications for multinationals[J]. Business Horizons, 2021, 64(2): 223-237. 57 李东红, 陈昱蓉, 周平录. 破解颠覆性技术创新的跨界网络治理路径——基于百度Apollo自动驾驶开放平台的案例研究[J]. 管理世界, 2021, 37(4): 130-159. 58 江鸿, 吕铁. 政企能力共演化与复杂产品系统集成能力提升——中国高速列车产业技术追赶的纵向案例研究[J]. 管理世界, 2019, 35(5): 106-125, 199. 59 刘海兵, 刘洋, 黄天蔚. 数字技术驱动高端颠覆性创新的过程机理: 探索性案例研究[J]. 管理世界, 2023, 39(7): 63-81, 99, 82. 60 张洪胜, 杜雨彤, 张小龙. 产业数字化与国内大循环[J]. 经济研究, 2024, 59(5): 97-115. |
|
|
|