|
|
Emerging-Technology Identification Based on Technology Structure-Function Semantic Association |
Jiang Man1,2, Yang Siluo1,2, Wei Jiaze1 |
1.School of Information Management, Wuhan University, Wuhan 430072 2.Research Center for Chinese Science Evaluation (RCCSE), Wuhan University, Wuhan 430072 |
|
|
Abstract Unearthing the deep semantic information of emerging technologies is crucial for accurately capturing technology development opportunities and enhancing the strategic orientation of emerging technologies. This study focuses on the technological element level, which encompasses the technology structure and function. Initially, a model for extracting technological structure-function elements is constructed. Next, an improved “subject-action-object” method is used to extract the internal semantic structure of the technological elements. Subsequently, a comprehensive multidimensional index is established based on the four attributes of the emerging technology to evaluate its emergence degree. Finally, a multidimensional association diagram is constructed to illustrate the internal and external semantic structures of the emerging technological elements and their semantic associations and trends. Empirical evidence from digital medical technology shows that this method effectively identifies emerging technological structures and functions, as well as reveals their internal and external semantic associations. The results indicate that while new technological structures do not necessarily result in new functions, most new functions depend on innovative structures. This method proficiently reveals the internal and external semantic associations and can present the content of emerging technologies with fine granularity and multiple dimensions.
|
Received: 11 July 2024
|
|
|
|
1 王玏, 吴新年. 新兴技术识别方法研究综述[J]. 图书情报工作, 2020, 64(4): 125-135. 2 杨思洛, 江曼. 新兴技术内涵特征和识别方法研究进展[J]. 情报科学, 2023, 41(5): 181-190. 3 赖朝安, 侯延行, 文雄辉. 基于专利SAO链的技术预见方法研究——以工业机器人领域为例[J]. 科技管理研究, 2020, 40(7): 171-179. 4 李欣, 王静静, 杨梓, 等. 基于SAO结构语义分析的新兴技术识别研究[J]. 情报杂志, 2016, 35(3): 80-84. 5 王敏, 银路. 技术演化的集成研究及新兴技术演化[J]. 科学学研究, 2008, 26(3): 466-471. 6 Rotolo D, Hicks D, Martin B R. What is an emerging technology?[J]. Research Policy, 2015, 44(10): 1827-1843. 7 Lozano S, Calzada-Infante L, Adenso-Díaz B, et al. Complex network analysis of keywords co-occurrence in the recent efficiency analysis literature[J]. Scientometrics, 2019, 120(2): 609-629. 8 Porter A L, Garner J, Carley S F, et al. Emergence scoring to identify frontier R&D topics and key players[J]. Technological Forecasting and Social Change, 2019, 146: 628-643. 9 Xu H Y, Winnink J, Yue Z H, et al. Multidimensional Scientometric indicators for the detection of emerging research topics[J]. Technological Forecasting and Social Change, 2021, 163: 120490. 10 周海炜, 吴成凤. 基于专利SAO结构和多指标评价的新兴技术识别研究——以手机芯片领域为例[J]. 情报杂志, 2022, 41(2): 86-94, 48. 11 Jiang M, Yang S L, Gao Q. Multidimensional indicators to identify emerging technologies: perspective of technological knowledge flow[J]. Journal of Informetrics, 2024, 18(1): 101483. 12 刘小玲, 谭宗颖. 新兴技术主题识别方法研究进展[J]. 图书情报工作, 2020, 64(11): 145-152. 13 Zhou Y, Lin H, Liu Y F, et al. A novel method to identify emerging technologies using a semi-supervised topic clustering model: a case of 3D printing industry[J]. Scientometrics, 2019, 120(1): 167-185. 14 李蓓, 陈向东. 海峡两岸核心及新兴技术比较—基于专利引文网络的分析[J]. 科研管理, 2015, 36(2): 96-106. 15 赵继贵, 钱育蓉, 王魁, 等. 中文命名实体识别研究综述[J]. 计算机工程与应用, 2024, 60(1): 15-27. 16 Joung J, Kim K. Monitoring emerging technologies for technology planning using technical keyword based analysis from patent data[J]. Technological Forecasting and Social Change, 2017, 114: 281-292. 17 孔德婧, 董放, 陈子婧, 等. 离群专利视角下的新兴技术预测——基于BERT模型和深度神经网络[J]. 图书情报工作, 2021, 65(17): 131-141. 18 宋博文, 栾春娟, 梁丹妮. 机器学习视域下新兴技术主题识别研究——基于技术特征相似性[J]. 现代情报, 2022, 42(9): 49-57. 19 李晓曼, 张学福, 宋红燕, 等. 专利文献技术要素识别方法研究——以纳米肥料领域为例[J]. 图书情报工作, 2020, 64(6): 59-68. 20 张金柱, 叶晓宇. 基于结构-功能语义关联的技术机会识别研究[J]. 情报科学, 2024, 42(8): 164-173. 21 段庆锋, 蒋保建. 基于SAO结构的专利技术功效图构建研究[J]. 现代情报, 2017, 37(6): 48-54. 22 Choi S, Yoon J, Kim K, et al. SAO network analysis of patents for technology trends identification: a case study of polymer electrolyte membrane technology in proton exchange membrane fuel cells[J]. Scientometrics, 2011, 88(3): 863-883. 23 Yoon J, Kim K. Identifying rapidly evolving technological trends for R&D planning using SAO-based semantic patent networks[J]. Scientometrics, 2011, 88(1): 213-228. 24 李欣, 谢前前, 黄鲁成, 等. 基于SAO结构语义挖掘的新兴技术演化轨迹研究[J]. 科学学与科学技术管理, 2018, 39(1): 17-31. 25 刘春江, 刘自强, 方曙. 基于SAO的技术主题创新演化路径识别及其可视化研究[J]. 情报学报, 2023, 42(2): 164-175. 26 孔令凯, 杨朝均, 齐浩, 等. 基于SAO结构的关键技术要素识别研究——以高速芯片为例[J]. 数字图书馆论坛, 2023, 19(10): 40-51. 27 伊惠芳, 刘细文, 陆婕, 等. 基于问题—解决方案(P-S)的技术机会发现研究[J]. 图书情报工作, 2023, 67(17): 102-117. 28 宋欣娜, 郭颖, 席笑文. 基于专利文献的多指标新兴技术识别研究[J]. 情报杂志, 2020, 39(6): 76-81, 88. 29 曹艺文, 许海云, 武华维, 等. 基于引文曲线拟合的新兴技术主题的突破性预测——以干细胞领域为例[J]. 图书情报工作, 2020, 64(5): 100-113. 30 许海云, 王超, 岳增慧, 等. 基于知识网络强弱关系变迁测度新兴主题的未来不确定性[J]. 情报理论与实践, 2021, 44(11): 89-98. 31 Kwon S, Youtie J, Porter A L. Interdisciplinary knowledge combinations and emerging technological topics: Implications for reducing uncertainties in research evaluation[J]. Research Evaluation, 2021, 30(1): 127-140. 32 江曼, 孙明汉, 余翔, 等. 协同创新视角下技术机会识别模型——以中国智能机器人为例[J]. 情报杂志, 2020, 39(7): 42-48. 33 黄璐, 朱一鹤, 张嶷. 基于加权网络链路预测的新兴技术主题识别研究[J]. 情报学报, 2019, 38(4): 335-341. 责任编辑 冯家琪) |
|
|
|