|
|
Recognition of Emerging Technologies Based on Dynamic Characteristics of Multi-dimensional Attributes |
Li Chang1, Yang Zhongkai1, Dong Kun2 |
1.Institute of Science of Science and Science & Technology Management, Dalian University of Technology, Dalian 116024 2.Institute of Information Management, Shandong University of Technology, Zibo 255049 |
|
|
Abstract Under the background of a new generation of scientific and technological revolutions, identifying the emerging technology will help understand the frontier technology and its trends and help methodically plan scientific and technological strategies. This study first delineates the definition and multi-dimensional properties of emerging technologies. Then, based on the characteristics of attribute change of emerging technologies in the temporal dimension, this study proposes an emerging technology identification method using multi-dimensional attribute change characteristics. Empirical research has been conducted in the field of carbon nanomedicine. The results of the empirical research demonstrate that the method can effectively identify emerging technology and has functions as the fine-grained display of technical content and evolution processes.
|
Received: 26 July 2021
|
|
|
|
1 王玏, 吴新年. 新兴技术识别方法研究综述[J]. 图书情报工作, 2020, 64(4): 125-135. 2 Jari? I, Kne?evi?-Jari? J, Lenhardt M. Relative age of references as a tool to identify emerging research fields with an application to the field of ecology and environmental sciences[J]. Scientometrics, 2014, 100(2): 519-529. 3 Xu S, Hao L Y, An X, et al. Emerging research topics detection with multiple machine learning models[J]. Journal of Informetrics, 2019, 13(4): 100983. 4 Blei D M, Lafferty J D. Dynamic topic models[C]// Proceedings of the 23rd International Conference on Machine Learning. New York: ACM Press, 2006: 113-120. 5 杨超, 朱东华, 汪雪锋, 等. 专利技术主题分析: 基于SAO结构的LDA主题模型方法[J]. 图书情报工作, 2017, 61(3): 86-96. 6 吴红, 伊惠芳, 马永新, 等. 面向专利技术主题分析的WI-LDA模型研究[J]. 图书情报工作, 2018, 62(17): 68-74. 7 Liu X Y, Porter A L. A 3-dimensional analysis for evaluating technology emergence indicators[J]. Scientometrics, 2020, 124(1): 27-55. 8 白如江, 刘博文, 冷伏海. 基于多维指标的未来新兴科学研究前沿识别研究[J]. 情报学报, 2020, 39(7): 747-760. 9 Porter A L, Garner J, Carley S F, et al. Emergence scoring to identify frontier R&D topics and key players[J]. Technological Forecasting and Social Change, 2019, 146: 628-643. 10 Small H, Boyack K W, Klavans R. Identifying emerging topics in science and technology[J]. Research Policy, 2014, 43(8): 1450-1467. 11 Joung J, Kim K. Monitoring emerging technologies for technology planning using technical keyword based analysis from patent data[J]. Technological Forecasting and Social Change, 2017, 114: 281-292. 12 黄璐, 朱一鹤, 张嶷. 基于加权网络链路预测的新兴技术主题识别研究[J]. 情报学报, 2019, 38(4): 335-341. 13 曹兴, 孙绮悦. 新兴技术知识网络跨界融合的机理与实证研究[J]. 科学学研究, 2021, 39(5): 854-866. 14 张维冲, 王芳, 赵洪. 多源信息融合用于新兴技术发展趋势识别——以区块链为例[J]. 情报学报, 2019, 38(11): 1166-1176. 15 黄鲁成, 卢文光. 基于属性综合评价系统的新兴技术识别研究[J]. 科研管理, 2009, 30(4): 190-194. 16 周源, 刘宇飞, 薛澜. 一种基于机器学习的新兴技术识别方法: 以机器人技术为例[J]. 情报学报, 2018, 37(9): 939-955. 17 马志云, 许雅洁, 杨芳娟, 等. 新兴技术成长阶段动态监测方法研究[J]. 科学学研究, 2020, 38(6): 976-989. 18 Rotolo D, Hicks D, Martin B R. What is an emerging technology?[J]. Research Policy, 2015, 44(10): 1827-1843. 19 Wang Q. A bibliometric model for identifying emerging research topics[J]. Journal of the Association for Information Science and Technology, 2018, 69(2): 290-304. 20 王凌燕, 方曙, 季培培. 利用专利文献识别新兴技术主题的技术框架研究[J]. 图书情报工作, 2011, 55(18): 74-78, 23. 21 刘小玲, 谭宗颖. 新兴技术主题识别方法研究进展[J]. 图书情报工作, 2020, 64(11): 145-152. 22 布莱恩·阿瑟. 技术的本质: 技术是什么, 它是如何进化的[M]. 曹东溟, 王健, 译.杭州: 浙江人民出版社, 2018. 23 Porter M E, Stern S. Measuring the “ideas” production function: evidence from international patent output[R]. National Bureau of Economic Research, 2000. 24 杨中楷, 梁永霞, 刘倩楠. 专利引用过程中的知识活动探析[J]. 科研管理, 2010, 31(2): 171-177. 25 杨中楷, 刘佳. 基于专利引文网络的技术轨道识别研究——以太阳能光伏电池板领域为例[J]. 科学学研究, 2011, 29(9): 1311-1317. 26 Verhoeven D, Bakker J, Veugelers R. Measuring technological novelty with patent-based indicators[J]. Research Policy, 2016, 45(3): 707-723. 27 Cobo M J, López-Herrera A G, Herrera-Viedma E, et al. An approach for detecting, quantifying, and visualizing the evolution of a research field: a practical application to the Fuzzy Sets Theory field[J]. Journal of Informetrics, 2011, 5(1): 146-166. 28 Breitzman A, Thomas P. The Emerging Clusters Model: a tool for identifying emerging technologies across multiple patent systems[J]. Research Policy, 2015, 44(1): 195-205. 29 刘自强, 王效岳, 白如江. 多维度视角下学科主题演化可视化分析方法研究——以我国图书情报领域大数据研究为例[J]. 中国图书馆学报, 2016, 42(6): 67-84. 30 刘自强, 王效岳, 白如江. 多维主题演化分析模型构建与实证研究[J]. 情报理论与实践, 2017, 40(3): 92-98. 31 李昌, 吴红, 伊惠芳, 等. 基于改进LDA主题模型的中日美氢能产业链技术布局研究[J]. 情报杂志, 2019, 38(7): 78-84, 110. 32 黄福. 基于遗传继承视角的研究前沿演化研究[D]. 大连: 大连理工大学, 2020: 54. 33 Liu H L, Chen Z W, Tang J, et al. Mapping the technology evolution path: a novel model for dynamic topic detection and tracking[J]. Scientometrics, 2020, 125(3): 2043-2090. 34 Pelaz B, Alexiou C, Alvarez-Puebla R A, et al. Diverse applications of nanomedicine[J]. ACS Nano, 2017, 11(3): 2313-2381. 35 Yang F R, Zhao Y F, Hu X W, et al. Nano-realgar suppresses lung cancer stem cell growth by repressing metabolic reprogramming[J]. Gene, 2021, 788: 145666. 36 Ferrara B, Belbekhouche S, Habert D, et al. Cell surface nucleolin as active bait for nanomedicine in cancer therapy: a promising option[J]. Nanotechnology, 2021, 32(32): 322001. 37 王宇斐, 马嘉虹, 梁兴杰. 纳米药物国际研究态势分析[J]. 中国科学: 生命科学, 2020, 50(7): 698-714. 38 刘婧, 胡豆豆, 周泉, 等. 抗肿瘤纳米药物的设计与挑战[J]. 中国科学: 化学, 2019, 49(9): 1192-1202. 39 Choi Y, Hong S. Qualitative and quantitative analysis of patent data in nanomedicine for bridging the gap between research activities and practical applications[J]. World Patent Information, 2020, 60: 101943. |
|
|
|