|
|
Tracing the Knowledge Flow Main Path Based on Important Citations |
Xia Hongyu, Hu Qian, Wang Zhongyi |
School of Information Management, Central China Normal University, Wuhan 430079 |
|
|
Abstract The traditional main path method based on citation network analysis does not consider the knowledge contribution of the cited literature to citations. It is considered that all citations of an academic document are of equal importance to the document, even though there can be various reasons and different levels of importance from one document to another. This paper applied main path analysis, taking different important citation levels into consideration, and constructed a citation importance index as a reference variable for adjusting traversal counts. The experimental results showed that the key main path and global main path after weighted adjustment of citation importance achieved the highest Precision and F1 scores in this experiment. This research proves that the weighted adjustment with citation importance can increase the continuity of the main path link in time, improving the correlation between nodes. This improves the traceability of the main path analysis method and the ability to find key nodes.
|
Received: 14 May 2021
|
|
|
|
1 卡尔·波普尔. 客观知识——一个进化论的研究[M]. 上海: 上海译文出版社, 1987. 2 Garfield E, Sher I H, Torpie R J. The use of citation data in writing the history of science[M]. Philadelphia: Institute for Scientific Information, 1964. 3 de Solla Price D J. Networks of scientific papers[J]. Science, 1965, 149(3683): 510-515. 4 Goffman W. Mathematical approach to the spread of scientific ideas—the history of mast cell research[J]. Nature, 1966, 212(5061): 449-452. 5 Small H, Griffith B C. The structure of scientific literatures I: identifying and graphing specialties[J]. Science Studies, 1974, 4(1): 17-40. 6 Hummon N P, Dereian P. Connectivity in a citation network: the development of DNA theory[J]. Social Networks, 1989, 11(1): 39-63. 7 赵蓉英, 王建品. 引用内容分析与引文著录分析的比较研究[J]. 图书情报工作, 2017, 61(10): 110-115. 8 Voos H, Dagaev K S. Are all citations equal? Or, did we op. cit. your idem?[J]. Journal of Academic Librarianship, 1976, 1(6): 19- 21. 9 Moravcsik M J, Murugesan P. Some results on the function and quality of citations[J]. Social Studies of Science, 1975, 5(1): 86-92. 10 Garfield E. Can citation indexing be automated?[C]// Proceedings of the Symposium on Statistical Association Methods for Mechanized Documentation. National Bureau of Standards Miscellaneous Publication 269, 1965: 189-192. 11 Finney B. The reference characteristics of scientific texts[D]. London: The City University of London, 1979. 12 Garzone M, Mercer R E. Towards an automated citation classifier[C]// Proceedings of the Conference of the Canadian Society for Computational Studies of Intelligence. Heidelberg: Springer, 2000: 337-346. 13 Pham S B, Hofmann A. A new approach for scientific citation classification using cue phrases[C]// Proceedings of the Australasian Joint Conference on Artificial Intelligence. Heidelberg: Springer, 2003: 759-771. 14 Teufel S, Siddharthan A, Tidhar D. Automatic classification of citation function[C]// Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2006: 103-110. 15 Bi H H, Wang J R, Lin D K J. Comprehensive citation index for research networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2011, 23(8): 1274-1278. 16 Zhu X D, Turney P, Lemire D, et al. Measuring academic influence: not all citations are equal[J]. Journal of the Association for Information Science and Technology, 2015, 66(2): 408-427. 17 Valenzuela M, Ha V, Etzioni O. Identifying meaningful citations[C]// Proceedings of the AAAI Workshop: Scholarly Big Data. Palo Alto: AAAI Press, 2015. 18 Dong C L, Sch?fer U. Ensemble-style self-training on citation classification[C]// Proceedings of 5th International Joint Conference on Natural Language Processing. Asian Federation of Natural Language Processing, 2011: 623-631. 19 Hernández-álvarez M, Gomez Soriano J M, Martínez-Barco P. Citation function, polarity and influence classification[J]. Natural Language Engineering, 2017, 23(4): 561-588. 20 Ding Y, Liu X Z, Guo C, et al. The distribution of references across texts: some implications for citation analysis[J]. Journal of Informetrics, 2013, 7(3): 583-592. 21 Pride D, Knoth P. Incidental or influential?—A decade of using text-mining for citation function classification[C]// Proceedings of the 16th International Society of Scientometrics and Informetrics Conference, Wuhan, China, 2017. 22 Hassan S U, Akram A, Haddawy P. Identifying important citations using contextual information from full text[C]// Proceedings of the 2017 ACM/IEEE Joint Conference on Digital Libraries. IEEE, 2017: 1-8. 23 Hassan S U, Safder I, Akram A, et al. A novel machine-learning approach to measuring scientific knowledge flows using citation context analysis[J]. Scientometrics, 2018, 116(2): 973-996. 24 Qayyum F, Afzal M T. Identification of important citations by exploiting research articles’ metadata and cue-terms from content[J]. Scientometrics, 2019, 118(1): 21-43. 25 Wang M Y, Ren J J, Li S, et al. Quantifying a paper’s academic impact by distinguishing the unequal intensities and contributions of citations[J]. IEEE Access, 2019, 7: 96198-96214. 26 Kumar S. Structure and dynamics of signed citation networks[C]// Proceedings of the 25th International Conference Companion on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2016: 63-64. 27 Tang R, Safer M A. Author-rated importance of cited references in biology and psychology publications[J]. Journal of Documentation, 2008, 64(2): 246-272. 28 Peldszus A. Towards segment-based recognition of argumentation structure in short texts[C]// Proceedings of the First Workshop on Argumentation Mining. Stroudsburg: Association for Computational Linguistics, 2014: 88-97. 29 Ding Y, Zhang G, Chambers T, et al. Content-based citation analysis: the next generation of citation analysis[J]. Journal of the Association for Information Science and Technology, 2014, 65(9): 1820-1833. 30 Wang M Y, Zhang J Q, Jiao S J, et al. Important citation identification by exploiting the syntactic and contextual information of citations[J]. Scientometrics, 2020, 125(3): 2109-2129. 31 胡志刚, 陈超美, 刘则渊, 等. 从基于引文到基于引用——一种统计引文总被引次数的新方法[J]. 图书情报工作, 2013, 57(21): 5-10. 32 Hou W R, Li M, Niu D K. Counting citations in texts rather than reference lists to improve the accuracy of assessing scientific contribution[J]. BioEssays, 2011, 33(10): 724-727. 33 Zhao D Z, Cappello A, Johnston L. Functions of uni- and multi-citations: implications for weighted citation analysis[J]. Journal of Data and Information Science, 2017, 2(1): 51-69. 34 Mari?i? S, Spaventi J, Pavi?i? L, et al. Citation context versus the frequency counts of citation histories[J]. Journal of the American Society for Information Science, 1998, 49(6): 530-540. 35 Bornmann L, Daniel H D. Functional use of frequently and infrequently cited articles in citing publications: a content analysis of citations to articles with low and high citation counts[J]. European Science Editing, 2008, 34(2): 35-38. 36 Jones T H, Hanney S. Tracing the indirect societal impacts of biomedical research: development and piloting of a technique based on citations[J]. Scientometrics, 2016, 107: 975-1003. 37 Bertin M, Atanassova I, Gingras Y, et al. The invariant distribution of references in scientific articles[J]. Journal of the Association for Information Science and Technology, 2016, 67(1): 164-177. 38 Boyack K W, van Eck N J, Colavizza G, et al. Reference behavior in the full text of scientific articles: a large-scale analysis[C]// Proceedings of the 16th International Conference of the International Society for Scientometrics and Informetrics. Leuven: ISSI Society, 2017: 787-798. 39 Fontana R, Nuvolari A, Verspagen B. Mapping technological trajectories as patent citation networks. An application to data communication standards[J]. Economics of Innovation and New Technology, 2009, 18(4): 311-336. 40 Martinelli A. An emerging paradigm or just another trajectory? Understanding the nature of technological changes using engineering heuristics in the telecommunications switching industry[J]. Research Policy, 2012, 41(2): 414-429. 41 Ho M H C, Lin V H, Liu J S. Exploring knowledge diffusion among nations: a study of core technologies in fuel cells[J]. Scientometrics, 2014, 100(1): 149-171. 42 孙冰, 徐晓菲, 苏晓. 技术扩散主路径及核心企业的识别研究——以手机芯片专利引文网络为例[J]. 情报学报, 2019, 38(2): 201-208. 43 海骏娇, 曾刚, 邹琳. 基于主路径分析的城市可持续性研究综述[J]. 世界地理研究, 2018, 27(6): 54-64. 44 Liang H G, Wang J J, Xue Y J, et al. IT outsourcing research from 1992 to 2013: a literature review based on main path analysis[J]. Information & Management, 2016, 53(2): 227-251. 45 Batagelj V. Efficient algorithms for citation network analysis[OL]. (2003-09-14). https://arxiv.org/pdf/cs/0309023.pdf. 46 Verspagen B. Mapping technological trajectories as patent citation networks: a study on the history of fuel cell research[J]. Advances in Complex Systems, 2007, 10(1): 93-115. 47 Choi C, Park Y. Monitoring the organic structure of technology based on the patent development paths[J]. Technological Forecasting and Social Change, 2009, 76(6): 754-768. 48 Liu J S, Lu L Y Y. An integrated approach for main path analysis: development of the Hirsch index as an example[J]. Journal of the American Society for Information Science and Technology, 2012, 63(3): 528-542. 49 Park H, Magee C L. Tracing technological development trajectories: a genetic knowledge persistence-based main path approach[J]. PLoS One, 2017, 12(1): e0170895. 50 冷伏海, 祝清松. 关键研究路径分析方法优化及应用研究——以量子失协领域为例[J]. 情报科学, 2016, 34(4): 3-6, 12. 51 万小萍, 汪锦霞, 刘向. 科技主路径分析: 提升路径多样性的组合路径[J]. 情报理论与实践, 2019, 42(6): 83-87. 52 刘向, 万小萍, 闫肖婷, 等. 基于引文路径叠加网络的主路径分析[J]. 情报学报, 2019, 38(8): 807-814. 53 刘宇, 李武. 引文评价合法性研究——基于引文功能和引用动机研究的综合考察[J]. 南京大学学报(哲学·人文科学·社会科学), 2013, 50(6): 137-148, 157. 54 陈亮, 杨冠灿, 张静, 等. 面向技术演化分析的多主路径方法研究[J]. 图书情报工作, 2015, 59(10): 124-130, 115. 55 彭泽, 叶光辉, 毕崇武, 等. 引文内容视角下的引文网络知识流动路径分析[J]. 情报理论与实践, 2020, 43(12): 19-25, 10. 56 Liu J S, Chen H H, Ho M H C, et al. Citations with different levels of relevancy: tracing the main paths of legal opinions[J]. Journal of the Association for Information Science and Technology, 2014, 65(12): 2479-2488. 57 Zhao D Z, Strotmann A. Dimensions and uncertainties of author citation rankings: lessons learned from frequency-weighted in-text citation counting[J]. Journal of the Association for Information Science and Technology, 2016, 67(3): 671-682. 58 Pak C M, Wang W B, Yu G. An analysis of in-text citations based on fractional counting[J]. Journal of Informetrics, 2020, 14(4): 101070. 59 张娴, 方曙. 专利引用网络主路径方法研究述评与展望[J]. 图书情报工作, 2016, 60(20): 140-148. 60 蒋合领, 杨安, 杨帆. 国外Altmetrics研究综述[J]. 情报科学, 2016, 34(7): 163-169. 61 Priem J, Groth P, Taraborelli D. The altmetrics collection[J]. PLoS One, 2012, 7(11): e48753. 62 张琳, 刘冬东, 吕琦, 等. 论文学科交叉测度研究: 从全部引文到章节引文[J]. 情报学报, 2020, 39(5): 492-499. |
|
|
|