|
|
Theoretical Research on the Weak Signal Analysis of Disruptive Technology Based on System Thinking |
Tang Hulin, Su Cheng, Li Wangyu |
Institute of Scientific and Technical Information of China, Beijing 100038 |
|
|
Abstract With the rapid advancement of scientific and technological revolution as well as industrial transformation, the accelerated emergence of disruptive technologies has become a general trend. The weak signals of disruptive technologies are characterized by fragmentation, ambiguity, and various forms of manifestation, posing significant challenges to understanding, analyzing, and utilizing them. Systems thinking provides a comprehensive and holistic perspective, offering the possibility of conducting an in-depth exploration of the nature and laws of the weak signal of disruptive technologies. Based on the concept of systems thinking, this study conducts a theoretical investigation of the weak signal of disruptive technologies and proposes a model for the early-stage development of disruptive technologies. The theoretical model suggests that disruptive technologies are developed in the closed-loop of technological development in the innovation chain, in which the proof-of-concept is extended in the internal elements of the development system of disruptive technologies; the effects of innovations such as methodology and technology are revealed in the proof-of-concept, the value of the technology is verified, and important signals are released to the external environmental elements; in the process of detecting weak signals, the focus should be on indicating weak signals with groundbreaking innovations. The model provides theoretical support for the early identification of disruptive technologies based on weak signals.
|
Received: 07 July 2024
|
|
|
|
1 刘安蓉, 李莉, 曹晓阳, 等. 颠覆性技术概念的战略内涵及政策启示[J]. 中国工程科学, 2018, 20(6): 7-13. 2 王康, 陈悦, 王玉奇, 等. 基于专利引用变化的颠覆性技术识别研究[J]. 情报杂志, 2022, 41(1): 74-80, 169. 3 邓建军, 刘安蓉, 曹晓阳, 等. 颠覆性技术早期识别方法框架研究――基于科学端的视角[J]. 中国科学院院刊, 2022, 37(5): 674-684. 4 Yoon J. Detecting weak signals for long-term business opportunities using text mining of web news[J]. Expert Systems with Applications, 2012, 39(16): 12543-12550. 5 Kim S, Kim Y E, Bae K J, et al. NEST: a quantitative model for detecting emerging trends using a global monitoring expert network and Bayesian network[J]. Futures, 2013, 52: 59-73. 6 陈伟, 王莉晓. 颠覆性技术弱信号识别漏斗模型研究[J]. 图书情报工作, 2024, 68(8): 97-111. 7 刘亚辉, 许海云, 武华维, 等. 基于多元弱关系融合的科学突破主题早期识别研究[J]. 情报学报, 2023, 42(1): 19-30. 8 王康, 陈悦. 基于异质性专利的颠覆性技术早期识别研究[J]. 科学学研究, 2023, 41(8): 1364-1375. 9 石慧, 潘云涛, 赵筱媛, 等. 基于文献挖掘的颠覆性技术早期识别研究[J]. 中国科技资源导刊, 2019, 51(4): 102-110. 10 Bower J L, Christensen C M. Disruptive technologies: catching the wave[J]. Harvard Business Review, 1995, 73(1): 43-53. 11 Christensen C M, Raynor M E. The innovator’s solution: creating and sustaining successful growth[M]. Boston: Harvard Business School Press, 2003. 12 Andersen B. The evolution of technological trajectories 1890-1990[J]. Structural Change and Economic Dynamics, 1998, 9(1): 5-34. 13 Danneels E. Disruptive technology reconsidered: a critique and research agenda[J]. Journal of Product Innovation Management, 2004, 21(4): 246-258. 14 Sood A, Tellis G J. Technological evolution and radical innovation[J]. Journal of Marketing, 2005, 69(3): 152-168. 15 陈继祥, 王敏. 破坏性创新理论最新研究综述[J]. 科技进步与对策, 2009, 26(11): 155-160. 16 Rafii F, Kampas P J. How to identify your enemies before they destroy you[J]. Harvard Business Review, 2002, 80(11): 115-123, 134. 17 荆象新, 锁兴文, 耿义峰. 颠覆性技术发展综述及若干启示[J]. 国防科技, 2015, 36(3): 11-13. 18 Alan R S. Disruptive technology: an uncertain future[EB/OL]. (2005-05-21) [2023-08-01]. https://apps.dtic.mil/sti/pdfs/ADA524679. pdf. 19 王志勇, 党晓玲, 刘长利, 等. 颠覆性技术的基本特征与国外研究的主要做法[J]. 国防科技, 2015, 36(3): 14-17, 22. 20 王康, 陈悦, 宋超, 等. 颠覆性技术: 概念辨析与特征分析[J]. 科学学研究, 2022, 40(11): 1937-1946. 21 苏成, 赵志耘, 赵筱媛, 等. 颠覆性技术新阐释: 概念、内涵及特征[J]. 情报学报, 2021, 40(12): 1253-1262. 22 周波, 冷伏海. 技术识别研究进展[M]// 情报学进展: 2020—2021年度评论(第十四卷). 北京: 航空工业出版社, 2022: 315-348. 23 马利彬. 颠覆性技术筛选评估重点问题研究[D]. 北京: 军事科学院, 2018. 24 张金柱, 王秋月, 仇蒙蒙. 颠覆性技术识别研究进展综述[J]. 数据分析与知识发现, 2022, 6(7): 12-31. 25 Massé P. Le plan ou l’anti-hasard[M]. Paris: Gallimard, 1965. 26 Ansoff H I. Managing strategic surprise by response to weak signals[J]. California Management Review, 1975, 18(2): 21-33. 27 Godet M. From anticipation to action: a handbook of strategic prospective[J]. Futures, 1994, 26(4): 453-455. 28 Blanco S, Lesca H. Business intelligence: integrating knowledge into the selection of early warning signals[EB/OL]. (1998-01-01) [2023-09-20]. https://www.researchgate.net/publication/228809446_ Business_intelligence_integrating_knowledge_into_the_selection_ of_early_warning_signals. 29 Mendon?a S, Pina e Cunha M, Kaivo-oja J, et al. Wild cards, weak signals and organisational improvisation[J]. Futures, 2004, 36(2): 201-218. 30 Hiltunen E. The future sign and its three dimensions[J]. Futures, 2008, 40(3): 247-260. 31 Saul P. Seeing the future in weak signals[J]. Journal of Futures Studies, 2006, 10(3): 93-102. 32 Molitor G T T. Molitor forecasting model: key dimensions for plotting the “patterns of change”[J]. Journal of Futures Studies, 2003, 8(1): 61-72. 33 Scheffer M, Bascompte J, Brock W A, et al. Early-warning signals for critical transitions[J]. Nature, 2009, 461(7260): 53-59. 34 Hiltunen E. Weak signals in organizational futures learning[D]. Helsinki: Helsinki School of Economics, 2010: 4-6. 35 van Veen B L, Ortt J R. Unifying weak signals definitions to improve construct understanding[J]. Futures, 2021, 134: 102837. 36 刘千里. 情报学语境下的信号研究综述[J]. 情报杂志, 2011, 30(1): 13-18. 37 刘千里. 情报信号意义构建研究[D]. 南京: 南京大学, 2011. 38 刘亚辉, 许海云. 突破性创新早期识别与弱信号分析综述[J]. 图书情报工作, 2021, 65(4): 89-101. 39 杨波, 邵婉婷. 弱信号概念的各领域研究向度和理路构建[J]. 情报杂志, 2023, 42(6): 96-103. 40 董尹, 李明阳, 胡雅萍, 等. 情报业务语境下的弱信号理论解析[J]. 情报杂志, 2023, 42(5): 137-144, 41. 41 黄冠迪. 论系统论八原理的整体结构——评《系统论——系统科学哲学》[J]. 系统科学学报, 2022, 30(1): 11-16. 42 范冬萍. 探索复杂性的系统哲学与系统思维[J]. 现代哲学, 2020(4): 97-102. 43 Manning C G. Technology readiness levels[EB/OL]. (2023-09-27) [2024-08-23]. http://www.nasa.gov/directorates/heo/scan/engineering/technology/technology_readiness_level. 44 Mankins J C. Technology readiness levels—a white paper[R]. Washington: National Aeronautics and Space Administration, 1995: 2-6. 45 Arthur W B. The nature of technology: what it is and how it evolves[M]. New York: Free Press, 2009. 46 王新, 乔晓东, 徐硕, 等. 基于事实型数据的技术生命周期判断方法综述[J]. 数字图书馆论坛, 2013(12): 35-43. 47 Ansoff H I. Conceptual underpinnings of systematic strategic management[J]. European Journal of Operational Research, 1985, 19(1): 2-19. 48 生成式人工智能服务管理暂行办法[EB/OL]. (2023-07-10) [2023-09-27]. https://www.gov.cn/zhengce/zhengceku/202307/content_6891752.htm. 49 陈云伟, 陶诚, 周海晨, 等. 基因编辑技术研究进展与挑战[J]. 世界科技研究与发展, 2021, 43(1): 8-23. 50 上海科学技术情报研究所, 上海市前沿技术发展研究中心, 技术与创新支持中心. 基因编辑技术专利态势[R/OL] // 专利与创新, 2023(2): 3-23. (2023-02-17) [2023-12-13]. https://www.istis.sh.cn/cms/news/article/176/26018. 51 代明, 梁意敏, 戴毅. 创新链解构研究[J]. 科技进步与对策, 2009, 26(3): 157-160. 52 吴晓波, 胡松翠, 章威. 创新分类研究综述[J]. 重庆大学学报(社会科学版), 2007, 13(5): 35-41. 53 Garcia R, Calantone R. A critical look at technological innovation typology and innovativeness terminology: a literature review[J]. Journal of Product Innovation Management, 2002, 19(2): 110-132. 54 陈建青. 对我国学术论文创新性评审的几点思考[J]. 青年记者, 2013(18): 33-35. 55 Kuhn T S. The structure of scientific revolutions[M]. Chicago: University of Chicago Press, 2012. 56 杜建, 武夷山. 一个用于识别睡美人文献的新的无参数指标——基于“Science”和“Nature”上睡美人文献的验证[J]. 情报理论与实践, 2017, 40(2): 19-25. |
|
|
|