|
|
Influencing Factors and Empirical Research on the Usage Behavior of Smart Library Online Chatbots |
Wang Xiwei1,2,3, Luo Ran1, Liu Yutong1, Wuji Siguleng1 |
1.School of Business and Management, Jilin University, Changchun 130022 2.Research Center for Big Data Management, Jilin University, Changchun 130022 3.Research Center of Cyberspace Governance, Jilin University, Changchun 130022 |
|
|
Abstract The smart library online chatbot is a novel medium for artificial intelligence to connect readers and smart libraries. Constructing a theoretical model for the usage behavior of a smart library online chatbot can play an important theoretical and practical role in the development of smart virtual reference services and smart libraries. Based on the stimulus-organism-response framework, combined with the information system success model and social response theory, from the two dimensions of functional and social characteristics, this study analyzes the influencing factors of the usage behavior of smart library online chatbots. The model determines how online chatbots affect users' organismal reaction and usage behavior in the smart library and provides a novel perspective for the study of online chatbot usage behaviors and a novel theoretical framework for behavioral analysis. The results are as follows. Information quality and empathy of smart library online chatbots have positive effects on satisfaction, and empathy and friendliness have positive effects on trust, while satisfaction and trust have positive effects on usage behavior. Users’ trust has the greatest influence on usage behavior, while the system quality of online chatbots has no influence on satisfaction. This research provides theoretical and practical significance for building new types of human-computer relationship in the construction of smart libraries, thereby realizing the equalization of public cultural services and promoting the transformation of conventional libraries into smart libraries.
|
Received: 18 January 2022
|
|
|
|
1 上观新闻. 吴建中: 建设智慧图书馆, 我们准备好了吗?[EB/OL]. (2021-11-28) [2022-06-18]. https://export.shobserver.com/baijiahao/html/427628.html. 2 Rapp A, Curti L, Boldi A. The human side of human-chatbot interaction: a systematic literature review of ten years of research on text-based chatbots[J]. International Journal of Human-Computer Studies, 2021, 151: 102630. 3 Rizomyliotis I, Kastanakis M N, Giovanis A, et al. “How mAy I help you today?” The use of AI chatbots in small family businesses and the moderating role of customer affective commitment[J]. Journal of Business Research, 2022, 153: 329-340. 4 Balakrishnan J, Abed S S, Jones P. The role of meta-UTAUT factors, perceived anthropomorphism, perceived intelligence, and social self-efficacy in chatbot-based services?[J]. Technological Forecasting and Social Change, 2022, 180: 121692. 5 Gursoy D, Chi O H, Lu L, et al. Consumers acceptance of artificially intelligent (AI) device use in service delivery[J]. International Journal of Information Management, 2019, 49: 157-169. 6 Yildiz Durak H. Conversational agent-based guidance: examining the effect of chatbot usage frequency and satisfaction on visual design self-efficacy, engagement, satisfaction, and learner autonomy[J]. Education and Information Technologies, 2023, 28: 471-488. 7 Forbes. AI stats news: chatbots increase sales by 67% but 87% of consumers prefer humans[EB/OL]. (2019-11-25) [2022-06-18]. https://www.forbes.com/sites/gilpress/2019/11/25/ai-stats-news-chatbots-increase-sales-by-67-but-87-of-consumers-prefer-humans/?sh=6498cc4148a3. 8 樊慧丽, 邵波. 国内外图书馆机器人的研究应用现状与思考[J]. 图书馆杂志, 2017, 36(6): 88-94. 9 傅平, 邹小筑, 吴丹, 等. 回顾与展望: 人工智能在图书馆的应用[J]. 图书情报知识, 2018(2): 50-60. 10 程秀峰, 周玮珽, 张小龙, 等. 基于用户画像的图书馆智慧参考咨询服务模式研究[J]. 图书馆学研究, 2021(2): 86-93, 101. 11 McKie I A S, Narayan B. Enhancing the academic library experience with chatbots: an exploration of research and implications for practice[J]. Journal of the Australian Library and Information Association, 2019, 68(3): 268-277. 12 Mehrabian A, Russell J A. An approach to environmental psychology[M]. Cambridge: The MIT Press, 1974. 13 Xu J J, Benbasat I, Cenfetelli R T. The nature and consequences of trade-off transparency in the context of recommendation agents[J]. MIS Quarterly, 2014, 38(2): 379-406. 14 Zhu L L, Li H, Wang F K, et al. How online reviews affect purchase intention: a new model based on the stimulus-organism-response (S-O-R) framework[J]. Aslib Journal of Information Management, 2020, 72(4): 463-488. 15 Cho W C, Lee K Y, Yang S B. What makes you feel attached to smartwatches? The stimulus-organism-response (S-O-R) perspectives[J]. Information Technology & People, 2019, 32(2): 319-343. 16 DeLone W H, McLean E R. Information systems success: the quest for the dependent variable[J]. Information Systems Research, 1992, 3(1): 60-95. 17 DeLone W H, McLean E R. The DeLone and McLean model of information systems success: a ten-year update[J]. Journal of Management Information Systems, 2003, 19(4): 9-30. 18 武海东. 基于信息系统成功模型的数字资源统一检索系统评价[J]. 情报杂志, 2013, 32(4): 177-182. 19 张培. 高校学生用户学术数据库使用意向影响因素研究[J]. 图书情报知识, 2017(5): 108-119. 20 王文韬, 谢阳群, 刘坤锋. 基于扎根理论的虚拟健康社区用户使用意愿研究[J]. 情报资料工作, 2017(3): 75-82. 21 Nass C, Fogg B J, Moon Y. Can computers be teammates?[J]. International Journal of Human-Computer Studies, 1996, 45(6): 669-678. 22 Moon Y. Don’t blame the computer: when self-disclosure moderates the self-serving bias[J]. Journal of Consumer Psychology, 2003, 13(1/2): 125-137. 23 Hsieh S H, Lee C T. Hey Alexa: examining the effect of perceived socialness in usage intentions of AI assistant-enabled smart speaker[J]. Journal of Research in Interactive Marketing, 2021, 15(2): 267-294. 24 Cheng X S, Bao Y, Zarifis A, et al. Exploring consumers’ response to text-based chatbots in e-commerce: the moderating role of task complexity and chatbot disclosure[J]. Internet Research, 2022, 32(2): 496-517. 25 Aljaroodi H M, Chiong R, Adam M T P. Exploring the design of avatars for users from Arabian culture through a hybrid approach of deductive and inductive reasoning[J]. Computers in Human Behavior, 2020, 106: 106246. 26 Ni C Y, Yang S Q, Pan Y Q, et al. Sustainability of government microblog in China: exploring social factors on mobile government microblog continuance[J]. Sustainability, 2019, 11(24): 6887. 27 Huang J W, Lin C P. To stick or not to stick: the social response theory in the development of continuance intention from organizational cross-level perspective[J]. Computers in Human Behavior, 2011, 27(5): 1963-1973. 28 Behera R K, Bala P K, Ray A. Cognitive chatbot for personalised contextual customer service: behind the scene and beyond the hype[J/OL]. Information Systems Frontiers, (2021-07-09). https://doi.org/10.1007/s10796-021-10168-y. 29 International Standards Office. ISO 9241-11: 1998(en) ergonomic requirements for office work with visual display terminals (VDTs)—Part 11: guidance on usability[S/OL]. [2022-06-16]. https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:ed-1:v1:en. 30 Trivedi J. Examining the customer experience of using banking chatbots and its impact on brand love: the moderating role of perceived risk[J]. Journal of Internet Commerce, 2019, 18(1): 91-111. 31 Hoxmeier J A, DiCesare C. System response time and user satisfaction: an experimental study of browser-based applications[C]// Proceedings of the Americas Conference on Information Systems, 2000: 347. 32 Gao L L, Waechter K A. Examining the role of initial trust in user adoption of mobile payment services: an empirical investigation[J]. Information Systems Frontiers, 2017, 19(3): 525-548. 33 Gao L L, Waechter K A, Bai X S. Understanding consumers’ continuance intention towards mobile purchase: a theoretical framework and empirical study—a case of China[J]. Computers in Human Behavior, 2015, 53: 249-262. 34 Teo T S H, Srivastava S C, Jiang L. Trust and electronic government success: an empirical study[J]. Journal of Management Information Systems, 2008, 25(3): 99-132. 35 赵英, 范娇颖. 大学生持续使用社交媒体的影响因素对比研究——以微信、微博和人人网为例[J]. 情报杂志, 2016, 35(1): 188-195. 36 李月琳, 梁娜, 齐雪. 从交互维度到交互功能: 构建数字图书馆交互评估理论模型[J]. 中国图书馆学报, 2016, 42(1): 66-82. 37 Simon F. The influence of empathy in complaint handling: evidence of gratitudinal and transactional routes to loyalty[J]. Journal of Retailing and Consumer Services, 2013, 20(6): 599-608. 38 Czaplewski A J, Olson E M, Slater S F. Applying the RATER model for service success[J]. Marketing Management, 2002, 11(1): 14-17. 39 王文韬, 谢阳群, 谢笑. 关于D&M信息系统成功模型演化和进展的研究[J]. 情报理论与实践, 2014, 37(6): 73-76, 58. 40 Iglesias O, Markovic S, Rialp J. How does sensory brand experience influence brand equity? Considering the roles of customer satisfaction, customer affective commitment, and employee empathy[J]. Journal of Business Research, 2019, 96: 343-354. 41 Chen C C, Lin S Y, Cheng C H, et al. Service quality and corporate social responsibility, influence on post-purchase intentions of sheltered employment institutions[J]. Research in Developmental Disabilities, 2012, 33(6): 1832-1840. 42 Chu L, Chen H W, Cheng P Y, et al. Identifying features that enhance older adults’ acceptance of robots: a mixed methods study[J]. Gerontology, 2019, 65(4): 441-450. 43 Pelau C, Dabija D C, Ene I. What makes an AI device human-like? The role of interaction quality, empathy and perceived psychological anthropomorphic characteristics in the acceptance of artificial intelligence in the service industry[J]. Computers in Human Behavior, 2021, 122: 106855. 44 Tsai W C, Huang Y M. Mechanisms linking employee affective delivery and customer behavioral intentions[J]. Journal of Applied Psychology, 2002, 87(5): 1001-1008. 45 Z?otowski J, Yogeeswaran K, Bartneck C. Can we control it? Autonomous robots threaten human identity, uniqueness, safety, and resources[J]. International Journal of Human-Computer Studies, 2017, 100: 48-54. 46 季丹, 李武. 网络社区临场感对阅读行为的影响机制研究——基于满意度的中介效应分析[J]. 图书情报工作, 2016, 60(2): 42-46, 58. 47 Nguyen D M, Chiu Y T H, Le H D. Determinants of continuance intention towards banks’ chatbot services in Vietnam: a necessity for sustainable development[J]. Sustainability, 2021, 13(14): 7625. 48 Li L, Lee K Y, Emokpae E, et al. What makes You continuously use chatbot services? Evidence from Chinese online travel agencies[J]. Electronic Markets, 2021, 31(3): 575-599. 49 Morgan R M, Hunt S D. The commitment-trust theory of relationship marketing[J]. Journal of Marketing, 1994, 58(3): 20-38. 50 Longoni C, Bonezzi A, Morewedge C K. Resistance to medical artificial intelligence[J]. Journal of Consumer Research, 2019, 46(4): 629-650. 51 Seegebarth B, Backhaus C, Woisetschl?ger D M. The role of emotions in shaping purchase intentions for innovations using emerging technologies: a scenario-based investigation in the context of nanotechnology[J]. Psychology & Marketing, 2019, 36(9): 844-862. 52 Kang J W, Namkung Y. The information quality and source credibility matter in customers’ evaluation toward food O2O commerce[J]. International Journal of Hospitality Management, 2019, 78: 189-198. 53 Yang X. Determinants of consumers’ continuance intention to use social recommender systems: a self-regulation perspective[J]. Technology in Society, 2021, 64: 101464. 54 张颖, 朱庆华. 付费知识问答社区中提问者的答主选择行为研究[J]. 情报理论与实践, 2018, 41(12): 21-26. 55 首都图书馆2020年度报告[R/OL]. (2021-06-01) [2022-06-18]. https://oss.clcn.net.cn/clcn/uploads/file/202109/210923_164546_1899.pdf. 56 周浩, 龙立荣. 共同方法偏差的统计检验与控制方法[J]. 心理科学进展, 2004, 12(6): 942-950. 57 Irfan Ali Shah, 王芳. 巴基斯坦政府门户网站公众初始接受的影响因素研究——基于使用意向和执行意向双重视角[J]. 情报学报, 2019, 38(5): 543-556. 58 Abrahim S, Mir B A, Suhara H, et al. Structural equation modeling and confirmatory factor analysis of social media use and education[J]. International Journal of Educational Technology in Higher Education, 2019, 16(1): 32. 59 张薇薇, 朱杰, 蒋雪. 社会学习对专业虚拟社区不同类型用户知识贡献行为的影响研究[J]. 情报资料工作, 2021, 42(5): 94-103. 60 Trivedi J P, Trivedi H. Investigating the factors that make a fashion app successful: the moderating role of personalization[J]. Journal of Internet commerce, 2018, 17(2): 170-187. 61 Ashfaq M, Yun J, Yu S B, et al. I, chatbot: modeling the determinants of users’ satisfaction and continuance intention of AI-powered service agents[J]. Telematics and Informatics, 2020, 54: 101473. 62 Sharma S K, Sharma M. Examining the role of trust and quality dimensions in the actual usage of mobile banking services: an empirical investigation[J]. International Journal of Information Management, 2019, 44: 65-75. 63 Floropoulos J, Spathis C, Halvatzis D, et al. Measuring the success of the Greek Taxation Information System[J]. International Journal of Information Management, 2010, 30(1): 47-56. 64 李玉海, 金喆, 李佳会, 等. 我国智慧图书馆建设面临的五大问题[J]. 中国图书馆学报, 2020, 46(2): 17-26. 65 柯平, 彭亮. 图书馆高质量发展的赋能机制[J]. 中国图书馆学报, 2021, 47(4): 48-60. 66 Rahi S, Abd.Ghani M. Integration of DeLone and McLean and self-determination theory in internet banking continuance intention context[J]. International Journal of Accounting & Information Management, 2019, 27(3): 512-528. 67 Lin X, Wu R Z, Lim Y T, et al. Understanding the sustainable usage intention of mobile payment technology in Korea: cross-countries comparison of Chinese and Korean users[J]. Sustainability, 2019, 11(19): 5532. 68 王晰巍, 贾若男, 王雷, 等. 社交媒体用户转移行为影响因素模型及实证研究[J]. 图书情报工作, 2018, 62(18): 45-54. 69 饶权. 回顾与前瞻: 图书馆转型发展面临的问题与思考[J]. 中国图书馆学报, 2020, 46(1): 4-15. 70 Liu B J, Sundar S S. Should machines express sympathy and empathy? Experiments with a health advice chatbot[J]. Cyberpsychology, Behavior, and Social Networking, 2018, 21(10): 625-636. 71 de Gennaro M, Krumhuber E G, Lucas G. Effectiveness of an empathic chatbot in combating adverse effects of social exclusion on mood[J]. Frontiers in Psychology, 2020, 10: 3061. 72 Bohle S. “Plutchik”: artificial intelligence chatbot for searching NCBI databases[J]. Journal of the Medical Library Association, 2018, 106(4): 501-503. 73 化柏林. “数据、技术、应用”三位一体的公共文化服务智慧化[J]. 中国图书馆学报, 2021, 47(2): 40-52. 74 韩娟娟. 美国高校图书馆“主动式”聊天参考咨询服务的调查与研究[J]. 大学图书馆学报, 2020, 38(6): 104-110, 126. 75 张久珍. 图书馆: 全民终身学习的重要基础设施[J]. 图书情报工作, 2020, 64(16): 9-10. 76 邵波, 单轸, 王怡. 新一代服务平台环境下的智慧图书馆建设: 业务重组与数据管理[J]. 中国图书馆学报, 2020, 46(2): 27-37. 77 Petter S, DeLone W, McLean E R. Information systems success: the quest for the independent variables[J]. Journal of Management Information Systems, 2013, 29(4): 7-62. 78 Yoon N, Lee H K. AI recommendation service acceptance: assessing the effects of perceived empathy and need for cognition[J]. Journal of Theoretical and Applied Electronic Commerce Research, 2021, 16(5): 1912-1928. 79 Chee B T T, Taezoon P, Xu Q L, et al. Personality of social robots perceived through the appearance[J]. Work: a Journal of Prevention, Assessment & Rehabilitation, 2012, 41(Suppl 1): 272-276. 80 Everard A, Galletta D F. How presentation flaws affect perceived site quality, trust, and intention to purchase from an online store[J]. Journal of Management Information Systems, 2005, 22(3): 56-95. |
|
|
|