|
|
An Empirical Study on Factors Influencing Chinese Researchers' Research Data Reuse Behavior: Using Bioscience as an Example |
Zhang Xiaoyue1,2, Song Xiufang1,2, Liping Ku1,2, Liu Jinya1,2, Chen Xinlan1,2 |
1.National Science Library, Chinese Academy of Sciences, Beijing 100190 2.Department of Library, Information and Archives Management, School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190 |
|
|
Abstract Understanding influential factors and the mechanisms behind researchers' research data reuse behavior can support the formation of data reuse ecosystem, where open data (or data sharing) and data reuse can promote one another. Through a literature review, this paper put forward the theoretical model of research data reuse behavior based on an ecosystem perspective. We chose researchers from the Chinese Academy of Sciences in the bioscience departments as a sample and conduct convergent mixed method research in the following manner. PLS-SEM approaches were used to analyze the quantitative data from the questionnaire, and we collected supplementary qualitative data from open-ended questions in the questionnaire and results from semi-structured interviews with 10 representative researchers. These two kinds of data were then combined. Results reveal that perceived community culture foundation and perceived reuse support usability positively influence researchers' research data reuse behavior. Our research suggests that stakeholders should pay attention to research data quality control and researchers' rights management, specifically including the following recommendations: 1) promoting the internationalization of large domestic scientific data centers (repositories); 2) setting up a collaborative network in order to leverage the power of important groups and individuals; and 3) the formation of multiple strategies for research data reuse services.
|
Received: 17 August 2020
|
|
|
|
1 Faniel I M, Jacobsen T E. Reusing scientific data: how earthquake engineering researchers assess the reusability of colleagues’ data[J]. Computer Supported Cooperative Work, 2010, 19(3/4): 355-375. 2 Geissbuhler A, Safran C, Buchan I, et al. Trustworthy reuse of health data: a transnational perspective[J]. International Journal of Medical Informatics, 2013, 82(1): 1-9. 3 Pasquetto I V, Randles B M, Borgman C L. On the reuse of scientific data[J]. Data Science Journal, 2017, 16: 8. 4 Pronk T E. The time efficiency gain in sharing and reuse of research data[J/OL]. Data Science Journal, 2019, 18(1): 10. 5 Bishop L, Kuula-Luumi A. Revisiting qualitative data reuse[J]. SAGE Open, 2017, 7(1): 215824401668513. 6 Cooper D, Springer R. Data communities a new model for supporting STEM data sharing[EB/OL]. (2019-05-13) [2019-12-13]. https://doi.org/10.18665/sr.311396. 7 Adner R, Kapoor R. Value creation in innovation ecosystems: how the structure of technological interdependence affects firm performance in new technology generations[J]. Strategic Management Journal, 2010, 31(3): 306-333. 8 Tsujimoto M, Kajikawa Y, Tomita J, et al. A review of the ecosystem concept—towards coherent ecosystem design[J]. Technological Forecasting and Social Change, 2018, 136: 49-58. 9 Harrison T M, Pardo T A, Cook M. Creating open government ecosystems: a research and development agenda[J]. Future Internet, 2012, 4(4): 900-928. 10 包秦雯, 顾立平, 张潇月. 开放科研数据的行为影响因素研究——以地球科学领域为例[J]. 情报理论与实践, 2019, 42(5): 51-57. 11 van de Sandt S, Dallmeier-Tiessen S, Lavasa A, et al. The definition of reuse[J]. Data Science Journal, 2019, 18: 22. 12 Open data: the researcher perspective[R/OL]. (2017-04-12) [2019-7-15]. https://www.elsevier.com/__data/assets/pdf_file/0004/ 281920/Open-data-report.pdf. 13 Curty R G, Crowston K, Specht A, et al. Attitudes and norms affecting scientists' data reuse[J]. PLoS One, 2017, 12(12): e0189288. 14 Joo Y K, Kim Y. Engineering researchers' data reuse behaviours: a structural equation modelling approach[J]. The Electronic Library, 2017, 35(6): 1141-1161. 15 Curty R G, Qin J. Towards a model for research data reuse behavior[J]. Proceedings of the American Society for Information Science and Technology, 2014, 51(1): 1-4. 16 Kim Y, Yoon A. Scientists’ data reuse behaviors: a multilevel analysis[J]. Journal of the Association for Information Science and Technology, 2017, 68(12): 2709-2719. 17 Fairley E. Curated databases in the life sciences: the Edinburgh Mouse Atlas Project[R/OL]. (2009-07-13) [2018-11-15]. https://www.dcc.ac.uk/sites/default/files/documents/publications/case-studies/SCARP_EMAP.pdf. 18 Darch P T, Knox E J M. Ethical perspectives on data and software sharing in the sciences: a research agenda[J]. Library & Information Science Research, 2017, 39(4): 295-302. 19 Stuart D, Baynes G, Hrynaszkiewicz I, et al. Whitepaper: practical challenges for researchers in data sharing[R/OL]. (2018-03-21) [2020-01-15]. https://doi.org/10.6084/m9.figshare.5975011.v1. 20 科技部、财政部关于发布国家科技资源共享服务平台优化调整名单的通知[EB/OL]. (2019-06-10) [2019-12-23]. http://www.most.gov.cn/xxgk/xinxifenlei/fdzdgknr/qtwj/qtwj2019/201906/t20190610_147031.html. 21 国家基因组科学数据中心. 组学大数据标准[EB/OL]. (2019-11-28) [2019-12-23]. https://bigd.big.ac.cn/standards?lang=zh. 22 梁卓, 褚鑫, 曾艳, 等. 我国战略生物资源大数据及应用[J]. 中国科学院院刊, 2019, 34(12): 1399-1405. 23 班杜拉. 思想和行动的社会基础——社会认知论(上册)[M]. 林颖, 王小明, 胡谊, 等译. 上海: 华东师范大学出版社, 2001: 17. 24 Middleton L, Hall H, Raeside R. Applications and applicability of Social Cognitive Theory in information science research[J]. Journal of Librarianship and Information Science, 2019, 51(4): 927-937. 25 伍玉伟. 大学生信息查寻行为研究——以社会认知理论为视角[J]. 图书馆论坛, 2014, 34(8): 62-66. 26 张晓娟, 李贞贞. 基于社会认知理论的智能手机用户信息安全行为意愿研究[J]. 现代情报, 2017, 37(9): 16-22. 27 谭春辉, 朱宸良, 苟凡. 虚拟学术社区中科研人员合作行为影响因素研究——基于质性分析法与实证研究法相结合的视角[J]. 情报科学, 2020, 38(2): 52-58, 108. 28 Breckler S J. Empirical validation of affect, behavior, and cognition as distinct components of attitude[J]. Journal of Personality and Social Psychology, 1984, 47(6): 1191-1205. 29 Zimmerman A S. New knowledge from old data[J]. Science, Technology, & Human Values, 2008, 33(5): 631-652. 30 Davis F D, Bagozzi R P, Warshaw P R. User acceptance of computer technology: a comparison of two theoretical models[J]. Management Science, 1989, 35(8): 982-1003. 31 文静, 何琳, 韩正彪. 科研人员科学数据重用意愿的影响因素研究[J]. 图书情报知识, 2019(1): 11-20. 32 Enke N, Thessen A, Bach K, et al. The user’s view on biodiversity data sharing—investigating facts of acceptance and requirements to realize a sustainable use of research data[J]. Ecological Informatics, 2012, 11: 25-33. 33 Hsu L, Martin R L, McElroy B, et al. Data management, sharing, and reuse in experimental geomorphology: challenges, strategies, and scientific opportunities[J]. Geomorphology, 2015, 244: 180-189. 34 Yoon A, Kim Y. Social scientists' data reuse behaviors: exploring the roles of attitudinal beliefs, attitudes, norms, and data repositories[J]. Library & Information Science Research, 2017, 39(3): 224-233. 35 Joo S, Kim S, Kim Y. An exploratory study of health scientists’ data reuse behaviors: examining attitudinal, social, and resource factors[J]. Aslib Journal of Information Management, 2017, 69(4): 389-407. 36 Baker D A, Crompton J L. Quality, satisfaction and behavioral intentions[J]. Annals of Tourism Research, 2000, 27(3): 785-804. 37 He L, Nahar V. Reuse of scientific data in academic publications: an investigation of dryad digital repository[J]. Aslib Journal of Information Management, 2016, 68(4): 478-494. 38 Faniel I M, Kriesberg A, Yakel E. Social scientists' satisfaction with data reuse[J]. Journal of the Association for Information Science and Technology, 2016, 67(6): 1404-1416. 39 Melero R, Navarro-Molina C. Researchers' attitudes and perceptions towards data sharing and data reuse in the field of food science and technology[J]. Learned Publishing, 2020, 33(2): 163-179. 40 Nosek B A, Alter G, Banks G C, et al. Promoting an open research culture[J]. Science, 2015, 348(6242): 1422-1425. 41 谢艳秋, 钱鹏. 国外科学数据共享政策的发展研究[J]. 新世纪图书馆, 2014(1): 67-71. 42 Tenopir C, Allard S, Douglass K, et al. Data sharing by scientists: practices and perceptions[J]. PLoS One, 2011, 6(6): e21101. 43 Federer L M, Lu Y L, Joubert D J, et al. Biomedical data sharing and reuse: attitudes and practices of clinical and scientific research staff[J]. PLoS One, 2015, 10(6): e0129506. 44 Roche D G, Kruuk L E B, Lanfear R, et al. Public data archiving in ecology and evolution: how well are we doing?[J]. PLoS Biology, 2015, 13(11): e1002295. 45 Kim Y, Zhang P. Understanding data sharing behaviors of STEM researchers: the roles of attitudes, norms, and data repositories[J]. Library & Information Science Research, 2015, 37(3): 189-200. 46 Poisot T, Bruneau A, Gonzalez A, et al. Ecological data should not be so hard to find and reuse[J]. Trends in Ecology & Evolution, 2019, 34(6): 494-496. 47 Creswell J W, Creswell J D. Research design: qualitative, quantitative, and mixed methods approaches[M]. California: SAGE Publications, 2018: 299-301. 48 Greene J C, Caracelli V J, Graham W F. Toward a conceptual framework for mixed-method evaluation designs[J]. Educational Evaluation and Policy Analysis, 1989, 11(3): 255-274. 49 Granikov V, Hong Q N, Crist E, et al. Mixed methods research in library and information science: a methodological review[J]. Library & Information Science Research, 2020, 42(1): 101003. 50 Moseholm E, Fetters M D. Conceptual models to guide integration during analysis in convergent mixed methods studies[J]. Methodological Innovations, 2017, 10(2): 205979911770311. 51 Schmidt B, Gemeinholzer B, Treloar A. Open data in global environmental research: the Belmont Forum's open data survey[J]. PLoS One, 2016, 11(1): e0146695. 52 TIB. Open research data and materials[M/OL]// Open Science Training Handbook. (2018-04-04) [2019-07-22]. https://open-science-training-handbook.gitbook.io/book/open-science-basics/open- research-data-and-materials. 53 国家科技基础条件平台中心. 国家科学数据资源发展报告2017[M]. 北京: 科学技术文献出版社, 2018. 54 Hair J F, Ringle C M, Sarstedt M. PLS-SEM: indeed a silver bullet[J]. Journal of Marketing Theory and Practice, 2011, 19(2): 139-152. 55 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 中华人民共和国国家标准: 学科分类与代码GB/T 13745- 2009[S/OL]. (2009-05-06) [2019-12-08]. http://c.gb688.cn/bzgk/gb/showGb?type=online&hcno=4C13F521FD6ECB6E5EC026FCD7 79986E. 56 国家科技图书文献中心, 国家科技数字图书馆. 科技词表[EB/OL]. [2020-12-08]. https://www.nstl.gov.cn/stkos.html?t=Concept. 57 Ringle C M, Wende S, Becker J M. "SmartPLS 3." Boenningstedt: SmartPLS GmbH[EB/OL]. [2019-12-09]. http://www.smartpls.com. 58 Jarvis C B, MacKenzie S B, Podsakoff P M. A critical review of construct indicators and measurement model misspecification in marketing and consumer research[J]. Journal of Consumer Research, 2003, 30(2): 199-218. 59 贾跃千, 宝贡敏. 结构方程模型中的构成型测量模型研究前沿探析[J]. 外国经济与管理, 2009, 31(5): 52-59. 60 Bollen K A. Structural equation modelling with latent variables[M]. New York: John Wiley, 1989. 61 罗伯特·格雷戈里. 心理测量历史、原理及应用[M]. 施俊琦, 译. 北京: 机械工业出版社, 2013: 91. 62 Bagozzi R P, Yi Y. On the evaluation of structural equation models[J]. Journal of the Academy of Marketing Science, 1988, 16(1): 74-94. 63 邱皓政, 林碧芳. 结构方程模型的原理与应用[M]. 北京: 中国轻工业出版社, 2012: 99-107. 64 Fornell C, Larcker D F. Evaluating structural equation models with unobservable variables and measurement error[J]. Journal of Marketing Research, 1981, 18(1): 39-50. 65 Ringle C M, Sarstedt M, Straub D. A critical look at the use of PLS-SEM in MIS quarterly[J]. Social Science Electronic Publishing, 2012, 36(1): iii-xiv. 66 Petter S, Rai S A. Specifying formative constructs in information systems research[J]. MIS Quarterly, 2007, 31(4): 623-656. 67 Brown J D. The coefficient of determination[J]. Shiken: JALT Testing & Evaluation SIG Newsletter, 2003, 7(1): 14-16. 68 Hair J F, Sarstedt M, Hopkins L, et al. Partial least squares structural equation modeling (PLS-SEM): an emerging tool in business research[J]. European Business Review, 2014, 26(2): 106-121. 69 张涵, 康飞. 基于bootstrap的多重中介效应分析方法[J]. 统计与决策, 2016(5): 75-78. 70 屈宝强, 王凯. 数据出版视角下的科学数据同行评议[J]. 图书馆杂志, 2017, 36(10): 71-77. 71 孔丽华, 习妍, 郎杨琴, 等. 数据期刊中科学数据的同行评议方法研究[J]. 编辑学报, 2019, 31(3): 262-266. 72 Tummers J F, Schrijvers A J, Visser-Meily J M. A qualitative study of stakeholder views on the effects of provider payment on cooperation, quality of care and cost-containment in integrated stroke care[J]. BMC Health Services Research, 2013, 13: 127. 73 Padilla T, Faniel I. Community oriented research data curation and reuse[EB/OL]. (2016-03-23) [2020-02-12]. https://acrl.ala.org/ dh/2016/03/23/rdatacuration/. 74 Sansone S A, Rocca-Serra P, Field D, et al. Toward interoperable bioscience data[J]. Nature Genetics, 2012, 44(2): 121-126. 75 Duke C S, Porter J H. The ethics of data sharing and reuse in biology[J]. BioScience, 2013, 63(6): 483-489. |
|
|
|