|
|
Topic Prediction for Disruptive Technologies Based on Patent Literature—A Case Study of Artificial Intelligence Patents |
Chen Yuxin1, Lu Jun1, Han Yi2 |
1.College of Computer and Information Science, Southwest University, Chongqing 400715 2.Business College of Southwest University, Chongqing 402460 |
|
|
Abstract As a driving force of economic development and an important starting point and breakthrough in technological innovation, disruptive technology is of great significance for a country or enterprise to optimize its R&D layout and actively seize the commanding heights of science and technology by detecting its dynamic development process and realizing the identification and prediction of disruptive technology. From the perspective of technology and market, a measurement index of disruptive potential was constructed, and a dynamic trend identification method to detect the disruptive potential of technology topics was constructed by combining a time series sliding window and latent Dirichlet allocation (LDA). Patents in the field of artificial intelligence in the United States were taken as a sample to verify the usability of this method in identifying and predicting disruptive technologies. Combined with the top 10 international patent classification (IPC) groups with high correlation intensity of identified disruptive technology topics, the contents of disruptive technology were characterized, and the practical value of the method was further tested. Deep learning and image recognition and processing are disruptive technologies in the field of artificial intelligence. They are closely related and have an obvious collaborative development trend. Deep learning technology focuses on the field of electronic digital data processing, while image recognition and processing is applied to mainstream fields such as automatic driving, medical diagnosis, and television communication. The sample empirical data shows that the multi-index fusion method has more advantages for the identification of disruptive technologies. Closely combining the multi-index fusion method of sample data with the development trend prediction and exploring the influence of historical development inertia through the iterative continuity of time series can better reveal the evolutionary details of disruptive technologies, their development trend, and the internal dependence of its various elements.
|
Received: 27 October 2021
|
|
|
|
1 孙永福, 王礼恒, 陆春华, 等. 国内外颠覆性技术研究进展跟踪与研究方法总结[J]. 中国工程科学, 2018, 20(6): 14-23. 2 黄维. 构建颠覆性技术创新体系意义重大[EB/OL]. (2020-09-15) [2022-09-11]. https://news.sciencenet.cn/sbhtmlnews/2020/9/357702.shtm. 3 张玉磊, 戴海闻, 许泽浩, 等. 颠覆性技术遴选的基本原则与运行流程研究[J]. 科技管理研究, 2020, 40(13): 209-216. 4 刘春平. 日本、英国、俄罗斯等国家及机构对颠覆性技术创新方向的预判[EB/OL]. (2016-03-15) [2021-07-12]. https://www.cnais.org.cn/cn/arcview/602.html. 5 刘安蓉, 李莉, 曹晓阳, 等. 颠覆性技术概念的战略内涵及政策启示[J]. 中国工程科学, 2018, 20(6): 7-13. 6 中国科学院颠覆性技术创新研究组. 颠覆性技术创新研究: 信息科技领域[M]. 北京: 科学出版社, 2018: 14-21. 7 Bower J L, Christensen C M. Disruptive technologies: catching the wave[J]. Harvard Business Review, 1995, 73(1): 43-53. 8 Andersen B. The evolution of technological trajectories 1890-1990[J]. Structural Change and Economic Dynamics, 1998, 9(1): 5-34. 9 Sood A, Tellis G J. Demystifying disruption: a new model for understanding and predicting disruptive technologies[J]. Marketing Science, 2011, 30(2): 339-354. 10 Danneels E. Disruptive technology reconsidered: a critique and research agenda[J]. Journal of Product Innovation Management, 2004, 21(4): 246-258. 11 Nagy D, Schuessler J, Dubinsky A. Defining and identifying disruptive innovations[J]. Industrial Marketing Management, 2016, 57: 119-126. 12 陈继祥, 王敏. 破坏性创新理论最新研究综述[J]. 科技进步与对策, 2009, 26(11): 155-160. 13 刘云, 桂秉修, 马志云, 等. 国家重大工程背景下的颠覆性创新模式探究[J]. 科学学研究, 2019, 37(10): 1864-1873. 14 张欣. 颠覆性技术识别方法述评[J]. 图书情报工作, 2020, 64(17): 145-152. 15 Guo J F, Pan J F, Guo J X, et al. Measurement framework for assessing disruptive innovations[J]. Technological Forecasting and Social Change, 2019, 139: 250-265. 16 Walsh S T, Boylan R L, McDermott C, et al. The semiconductor silicon industry roadmap: epochs driven by the dynamics between disruptive technologies and core competencies[J]. Technological Forecasting and Social Change, 2005, 72(2): 213-236. 17 Ahn J H, Skudlark A. Managing risk in a new telecommunications service development process through a scenario planning approach[J]. Journal of Information Technology, 2002, 17(3): 103-118. 18 Firat A K, Woon W L, Madnick S. Technological forecasting-a review[R/OL]. Cambridge: Massachusetts Institute of Technology, (2008-09-01) [2021-07-09]. http://web.mit.edu/smadnick/www/wp/2008-15.pdf. 19 Cheng Y, Huang L C, Ramlogan R, et al. Forecasting of potential impacts of disruptive technology in promising technological areas: elaborating the SIRS epidemic model in RFID technology[J]. Technological Forecasting and Social Change, 2017, 117: 170-183. 20 孙建广, 檀润华, 江屏. 基于技术进化理论的破坏性创新预测与实现模型[J]. 机械工程学报, 2012, 48(11): 11-20. 21 于光辉, 宁钟, 李昊夫. 基于专利和Bass模型的颠覆性技术识别方法研究[J]. 科学学研究, 2021, 39(8): 1467-1473, 1536. 22 Keller A, Hüsig S. Ex ante identification of disruptive innovations in the software industry applied to web applications: the case of Microsoft’s vs. Google’s office applications[J]. Technological Forecasting and Social Change, 2009, 76(8): 1044-1054. 23 李乾瑞, 郭俊芳, 黄颖, 等. 基于专利计量的颠覆性技术识别方法研究[J]. 科学学研究, 2021, 39(7): 1166-1175. 24 王超, 马铭, 李思思, 等. Altmetrics视角下颠覆性技术的社会影响力探测研究[J]. 情报理论与实践, 2022, 45(1): 93-104. 25 苏敬勤, 刘建华, 王智琦, 等. 颠覆性技术的演化轨迹及早期识别——以智能手机等技术为例[J]. 科研管理, 2016, 37(3): 13-20. 26 Dotsika F, Watkins A. Identifying potentially disruptive trends by means of keyword network analysis[J]. Technological Forecasting and Social Change, 2017, 119: 114-127. 27 Momeni A, Rost K. Identification and monitoring of possible disruptive technologies by patent-development paths and topic modeling[J]. Technological Forecasting and Social Change, 2016, 104: 16-29. 28 刘忠宝, 康嘉琦, 张静. 基于主题突变检测的颠覆性技术识别——以无人机技术领域为例[J]. 科技导报, 2020, 38(20): 97-105. 29 张金柱, 张晓林. 基于被引科学知识主题突变的突破性创新识别[J]. 现代图书情报技术, 2016(7/8): 42-50. 30 开庆, 窦永香. 颠覆性技术识别研究综述[J]. 情报杂志, 2021, 40(11): 31-38. 31 李政, 刘春平, 罗晖. 浅析颠覆性技术的内涵与培育——重视颠覆性技术背后的基础科学研究[J]. 全球科技经济瞭望, 2016, 31(10): 53-61. 32 栾春娟, 程昉. 技术的市场潜力测度与预测——基于技术颠覆潜力与技术成熟度综合指标[J]. 科学学研究, 2016, 34(12): 1761-1768, 1816. 33 罗素平, 寇翠翠, 金金, 等. 基于离群专利的颠覆性技术预测——以中药专利为例[J]. 情报理论与实践, 2019, 42(7): 165-170. 34 孟祥翠, 代涛, 刘志鹏, 等. 颠覆性技术国际竞争力评价方法[J]. 科技导报, 2019, 37(19): 41-49. 35 赵格. 基于多源异构数据的颠覆性技术识别[D]. 武汉: 华中科技大学, 2017: 25-26. 36 Diakoulaki D, Mavrotas G, Papayannakis L. Determining objective weights in multiple criteria problems: the critic method[J]. Computers & Operations Research, 1995, 22(7): 763-770. 37 张立军, 张潇. 基于改进CRITIC法的加权聚类方法[J]. 统计与决策, 2015(22): 65-68. 38 姜伟. 基于MIMU的人体运动模式识别方法研究[D]. 阜新: 辽宁工程技术大学, 2021: 49-51. 39 冯士龙, 台宪青, 马治杰. 改进的基于日志聚类的异常检测方法[J]. 计算机工程与设计, 2020, 41(4): 1087-1092. 40 Blei D M, Ng A Y, Jordan M I. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022. 41 陈育新, 安欣宇, 刘春鹤, 等. 健康社区用户教育信息推荐模型比较[J]. 中华医学图书情报杂志, 2020, 29(10): 51-59. 42 Arora S, Ge R, Halpern Y, et al. Learning topic models—provably and efficiently[J]. Communications of the ACM, 2018, 61(4): 85-93. 43 宋凯, 朱彦君. 专利前沿技术主题识别及趋势预测方法——以人工智能领域为例[J]. 情报杂志, 2021, 40(1): 33-38. 44 吴红, 伊惠芳, 马永新, 等. 面向专利技术主题分析的WI-LDA模型研究[J]. 图书情报工作, 2018, 62(17): 68-74. 45 廖列法, 勒孚刚. 基于LDA模型和分类号的专利技术演化研究[J]. 现代情报, 2017, 37(5): 13-18. 46 张光宇, 欧春尧, 刘贻新, 等. 人工智能企业何以实现颠覆性创新?——基于扎根理论的探索[J]. 科学学研究, 2021, 39(4): 738-748, 757. 47 聂洪光, 范海荣. 基于专利数据的中美人工智能创新能力比较研究[J]. 中国科技论坛, 2020(5): 154-162. 48 USPTO. Patents pendency data May 2021[EB/OL]. [2021-07-12]. https://www.uspto.gov/dashboard/patents/pendency.html. 49 McCallum A K. MALLET: a machine learning for language toolkit[EB/OL]. 2002. [2021-07-17]. http://mallet.cs.umass.edu/. 50 ARK Invest. Big ideas 2021[R/OL]. (2021-01-26) [2021-07-17]. https://research.ark-invest.com/hubfs/1_Download_Files_ARK-Invest/White_Papers/ARK%E2%80%93Invest_BigIdeas_2021.pdf. 51 电子产品世界. 2018年科技领域十大颠覆性技术[EB/OL]. (2018-04-04) [2021-07-17]. http://news.eeworld.com.cn/qrs/article_2018040446713.html. 52 《全球人工智能发展报告(2018)》发布: 一览全球人工智能领域竞争态势[EB/OL]. (2019-04-25) [2021-07-17]. http://www.cbdio.com/BigData/2019-04/25/content_6092153.htm. 53 黄鲁成, 蒋林杉, 吴菲菲. 萌芽期颠覆性技术识别研究[J]. 科技进步与对策, 2019, 36(1): 10-17. 54 刘艳秋, 韩俊敏, 王建国, 等. 人工智能专利技术分布、演化及合作创新网络分析[J]. 中国科技论坛, 2021(3): 64-74. |
|
|
|