|
|
Transformative Research Foresight: Theoretical Model and Multi-dimensional Citation Characteristics |
Liang Guoqiang1, Bu Yi2, Hu Zhigang3, Hou Haiyan3 |
1.School of Economics and Management, Beijing University of Technology, Beijing 100124 2.Department of Information Management, Peking University, Beijing 100871 3.WISE_Lab, Institute of Science of Science and Management of S&T, Dalian University of Technology, Dalian 116024 |
|
|
Abstract Transformative research (TR), a major breakthrough in fundamental research, radically transforms our current scientific understanding and propels scientific research toward a new frontier. This study introduces a theoretical model and multi-dimensional citation characteristics of TR based on the cited-citing relationship between scientific studies. Additionally, this study explores the early characteristics of TR by using Nobel Prize-winning papers as a proxy. The results show that TR’s true nature is a potential new paradigm, as presented in Kuhn’s theory of scientific revolution; specifically, TR occurs in the beginning of a period of scientific revolution. As for the broadness of TR, the convergence of its disciplinary and early diffusion characteristics are apparent. Regarding the intensity dimension, the knowledge absorption and early disruption characteristics of TR are apparent. When considering the speed dimension, the obsolescent characteristics—as well as the early growth characteristics after its publication—are apparent. This research provides a theoretical and multi-dimensional citation framework for the quantitative analysis of TR at its early stage, which is a step toward TR forecasting.
|
Received: 09 December 2021
|
|
|
|
1 杜建, 孙轶楠, 张阳, 等. 变革性研究的科学计量学特征与早期识别方法[J]. 中国科学基金, 2019, 33(1): 88-98. 2 Xu H Y, Winnink J, Wu H W, et al. Using the catastrophe theory to discover transformative research topics[J]. Research Evaluation, 2022, 31(1): 61-79. 3 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[EB/OL]. (2021-03-13). http://www.gov.cn/xinwen/2021-03/13/content_5592681.htm. 4 《国家自然科学基金“十二五”发展规划》发布[EB/OL]. (2011-07-16). http://www.gov.cn/jrzg/2011-07/16/content_1907835.htm. 5 赵英弘, 郑知敏, 郝红全, 等. 2020年度国家自然科学基金项目申请、评审与资助工作综述[J]. 中国科学基金, 2021, 35(1): 12-15. 6 温芳芳. 基于引文分析的知识扩散研究——以我国图书情报学博士学位论文为例[J]. 情报理论与实践, 2015, 38(9): 64-68, 78. 7 闵超, 张帅, 孙建军. 科学文献网络中的引文扩散——以2011年诺贝尔化学奖获奖论文为例[J]. 情报学报, 2020, 39(3): 259-273. 8 Liang G Q, Hou H Y, Ding Y, et al. Knowledge recency to the birth of Nobel Prize-winning articles: Gender, career stage, and country[J]. Journal of Informetrics, 2020, 14(3): 101053. 9 Liang G Q, Hou H Y, Lou X D, et al. Qualifying threshold of “take-off” stage for successfully disseminated creative ideas[J]. Scientometrics, 2019, 120(3): 1193-1208. 10 Wu L F, Wang D S, Evans J A. Large teams develop and small teams disrupt science and technology[J]. Nature, 2019, 566(7744): 378-382. 11 Ke Q, Ferrara E, Radicchi F, et al. Defining and identifying Sleeping Beauties in science[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(24): 7426-7431. 12 Li J, Ye F Y. Distinguishing sleeping beauties in science[J]. Scientometrics, 2016, 108(2): 821-828. 13 蒋劲松, 刘兵. 科学哲学读本[M]. 北京: 中国人民大学出版社, 2008. 14 Kuhn T S. The structure of scientific revolutions[M]. Chicago: The University of Chicago Press, 1962. 15 刘则渊, 陈悦. 现代科学技术与发展导论[M]. 2版. 大连: 大连理工大学出版社, 2011. 16 梁正, 邓兴华, 洪一晨. 从变革性研究到变革性创新: 概念演变与政策启示[J]. 科学与社会, 2017, 7(3): 94-106. 17 胡明晖. 变革性研究: 定义、特征与资助机制[J]. 科技进步与对策, 2016, 33(12): 115-118. 18 National Science Board. Enhancing support of transformative research at the National Science Foundation[R/OL]. National Science Foundation, 2007: NSB-07-32. (2007-05-07). https://www.nsf.gov/pubs/2007/nsb0732/nsb0732.pdf. 19 Tahamtan I, Bornmann L. Creativity in science and the link to cited references: is the creative potential of papers reflected in their cited references?[J]. Journal of Informetrics, 2018, 12(3): 906-930. 20 Silva F N, Rodrigues F A, JrOliveira O N, et al. Quantifying the interdisciplinarity of scientific journals and fields[J]. Journal of Informetrics, 2013, 7(2): 469-477. 21 梁国强, 侯海燕, 高桐, 等. 基于创新扩散理论的学术论文影响力广度研究[J]. 图书情报工作, 2019, 63(2): 91-98. 22 Didegah F, Thelwall M. Determinants of research citation impact in nanoscience and nanotechnology[J]. Journal of the American Society for Information Science and Technology, 2013, 64(5): 1055-1064. 23 Liang G Q, Hou H Y, Ren P L, et al. Understanding Nobel Prize-winning articles: a bibliometric analysis[J]. Current Science, 2019, 116(3): 379-385. 24 Guo Z Y, Meng F, Chinchilla-Rodríguez Z, et al. Revisiting the obsolescence process of individual scientific publications: operationalisation and a preliminary cross-discipline exploration[C]// Proceedings of the 18th International Conference on Scientometrics and Informetrics, Leuven, Belgium, 2021: 477-488. 25 Wang J. Citation time window choice for research impact evaluation[J]. Scientometrics, 2013, 94(3): 851-872. 26 张靖雯, 孙建军, 闵超. 引文起飞的定义与量化方法研究[J]. 情报学报, 2019, 38(8): 786-797. 27 Rogers E M. Diffusion of innovations[M]. New York: The Free Press, 1962. 28 Zhang H H, Zuccala A A, Ye F Y. Tracing the ‘swan groups’ of physics and economics in the key publications of Nobel laureates[J]. Scientometrics, 2019, 119(1): 425-436. 29 张家榕, 曾继城, 叶鹰. 3S引文现象的特征测度及学术意义——“睡美人”、“时髦女”与“天鹅”综论[J]. 情报学报, 2017, 36(12): 1241-1246. 30 Hu X J, Rousseau R. Nobel prize winners 2016: igniting or sparking foundational publications?[J]. Scientometrics, 2017, 110(2): 1053-1063. 31 Hu X J, Rousseau R. Scientific influence is not always visible: the phenomenon of under-cited influential publications[J]. Journal of Informetrics, 2016, 10(4): 1079-1091. 32 Charlton B G. Measuring revolutionary biomedical science 1992-2006 using Nobel prizes, Lasker (clinical medicine) awards and Gairdner awards (NLG metric)[J]. Medical Hypotheses, 2007, 69(1): 1-5. 33 Jin Y Y, Yuan S, Shao Z, et al. Turing Award elites revisited: patterns of productivity, collaboration, authorship and impact[J]. Scientometrics, 2021, 126(3): 2329-2348. 34 Li J C, Yin Y, Fortunato S, et al. A dataset of publication records for Nobel laureates[J]. Scientific Data, 2019, 6(1): Article No.33. |
|
|
|