|
|
Dynamic Identification of Emerging Topics in Discipline Based on the Comparison between Different Types of Media: A Method Combining Altmetrics and Citations |
Duan Qingfeng, Yan Xuxian, Chen Hong, Liu Dongxia |
School of Management Science & Engineering, Shanxi University of Finance and Economics, Taiyuan 030006 |
|
|
Abstract The timeliness advantage of social networking media helps in identifying emerging scientific topics. However, the evolution of emerging topics in disciplines is relatively different between social media and publishing media in that their altmetrics tend to dominate citations during the period of emergence. We believe that the fast-growing gap occurring between these two indicators is a key basis for distinguishing scientific emerging topics from other topics. As such, we propose a method to recognize the underlying emergent topics in disciplines via comparison among different media. First, by combining altmetrics and citations, we devise the “rgap” indicator (a gap indicating the relative differences of media in terms of the activeness of topics) to conduct sequential comparisons. Second, we employ the Burst Detection Algorithm to detect the burst status of topics, using the sequence of the “rgap” indicator, which can help identify the emerging topics and show their process of evolution. Finally, we conduct an empirical analysis in the field of information science, and the empirical analysis has proven that this identification method is effective and reliable. The identification method based on a media comparison index showed good identification ability and timeliness advantage. We also found that a satisfactory result can be achieved to some extent when using altmetrics indicators that are characterized by high level of coverage and prevalence, such as tweets or posts.
|
Received: 15 May 2021
|
|
|
|
1 刘小玲, 谭宗颖. 新兴技术主题识别方法研究进展[J]. 图书情报工作, 2020, 64(11): 145-152. 2 Xu S, Hao L Y, An X, et al. Emerging research topics detection with multiple machine learning models[J]. Journal of Informetrics, 2019, 13(4): 100983. 3 杨金庆, 陆伟, 吴乐艳. 面向学科新兴主题探测的多源科技文献时滞计算及启示——以农业学科领域为例[J]. 情报学报, 2021, 40(1): 21-29. 4 Yang S L, Xing X, Qi F, et al. Comparison of academic book impact from a disciplinary perspective: an analysis of citations and altmetric indicators[J]. Scientometrics, 2021, 126(2): 1101-1123. 5 Bornmann L, Haunschild R, Adams J. Do altmetrics assess societal impact in a comparable way to case studies? An empirical test of the convergent validity of altmetrics based on data from the UK research excellence framework (REF)[J]. Journal of Informetrics, 2019, 13(1): 325-340. 6 Ortega J L. Proposal of composed altmetric indicators based on prevalence and impact dimensions[J]. Journal of Informetrics, 2020, 14(4): 101071. 7 Rotolo D, Hicks D, Martin B R. What is an emerging technology?[J]. Research Policy, 2015, 44(10): 1827-1843. 8 Xu H Y, Winnink J, Yue Z H, et al. Multidimensional Scientometric indicators for the detection of emerging research topics[J]. Technological Forecasting and Social Change, 2021, 163: 120490. 9 宋欣娜, 郭颖, 席笑文. 基于专利文献的多指标新兴技术识别研究[J]. 情报杂志, 2020, 39(6): 76-81, 88. 10 曹艺文, 许海云, 武华维, 等. 基于引文曲线拟合的新兴技术主题的突破性预测——以干细胞领域为例[J]. 图书情报工作, 2020, 64(5): 100-113. 11 刘敏娟, 张学福, 颜蕴. 基于核心词、突变词与新生词的学科主题演化方法研究[J]. 情报杂志, 2016, 35(12): 175-180. 12 白敬毅, 颜端武, 陈琼. 基于主题模型和曲线拟合的新兴主题趋势预测研究[J]. 情报理论与实践, 2020, 43(7): 130-136, 193. 13 Kleinberg J. Bursty and hierarchical structure in streams[J]. Data Mining and Knowledge Discovery, 2003, 7: 373-397. 14 Yang Z L, Zhang W J, Yuan F, et al. Measuring topic network centrality for identifying technology and technological development in online communities[J]. Technological Forecasting and Social Change, 2021, 167: 120673. 15 Breitzman A, Thomas P. The Emerging Clusters Model: a tool for identifying emerging technologies across multiple patent systems[J]. Research Policy, 2015, 44(1): 195-205. 16 余波, 赵蓉英. Altmetrics Top100论文的演进特征及影响因素分析[J]. 现代情报, 2020, 40(7): 134-143, 151. 17 邱均平, 余厚强. 论推动替代计量学发展的若干基本问题[J]. 中国图书馆学报, 2015, 41(1): 4-15. 18 Khan N, Thelwall M, Kousha K. Measuring the impact of biodiversity datasets: data reuse, citations and altmetrics[J]. Scientometrics, 2021, 126(4): 3621-3639. 19 李小涛, 金心怡. 基于Altmetrics的《科学计量学》研究热点与前沿分析[J]. 现代情报, 2019, 39(1): 153-160. 20 迟培娟, 陈挺, 宋秀芳, 等. 基于Altmetrics指标识别的研究热点对比分析——以生物学领域为例[J]. 数字图书馆论坛, 2019(5): 37-41. 21 秦奋, 高健. 基于Scopus数据库的Altmetrics指标与引文计量对比分析[J]. 情报学报, 2019, 38(4): 377-383. 22 王菲菲, 刘明. Altmetrics视角下的交叉学科研究前沿探测——以医学信息学领域为例[J]. 情报学报, 2020, 39(10): 1011-1020. 23 牌艳欣, 李长玲, 刘运梅. 基于z指数的AAS高关注度学科研究主题识别[J]. 情报资料工作, 2019, 40(6): 30-37. 24 Small H, Boyack K W, Klavans R. Identifying emerging topics in science and technology[J]. Research Policy, 2014, 43(8): 1450-1467. 25 王贤文, 毛文莉, 王治. 基于论文下载数据的科研新趋势实时探测与追踪[J]. 科学学与科学技术管理, 2014, 35(4): 3-9. 26 Drongstrup D, Malik S, Aljohani N R, et al. Can social media usage of scientific literature predict journal indices of AJG, SNIP and JCR? An altmetric study of economics[J]. Scientometrics, 2020, 125(2): 1541-1558. 27 Holmberg K, Hedman J, Bowman T D, et al. Do articles in open access journals have more frequent altmetric activity than articles in subscription-based journals? An investigation of the research output of Finnish universities[J]. Scientometrics, 2020, 122(1): 645-659. 28 段庆锋, 潘小换. 利用社交媒体识别学科新兴主题研究[J]. 情报学报, 2017, 36(12): 1216-1223. 29 Ortega J L. The life cycle of altmetric impact: a longitudinal study of six metrics from PlumX[J]. Journal of Informetrics, 2018, 12(3): 579-589. 30 Blei D M, Lafferty J D. Dynamic topic models[C]// Proceedings of the 23rd International Conference on Machine Learning. New York: ACM Press, 2006: 113-120. 31 Blei D M, Ng A Y, Jordan M I. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022. 32 Xu S, Hao L Y, Yang G C, et al. A topic models based framework for detecting and forecasting emerging technologies[J]. Technological Forecasting and Social Change, 2021, 162: 120366. 33 Torres-Salinas D, Arroyo-Machado W, Thelwall M. Exploring WorldCat identities as an altmetric information source: a library catalog analysis experiment in the field of Scientometrics[J]. Scientometrics, 2021, 126(2): 1725-1743. 34 Moed H F, Gl?nzel W, Schmoch U. Handbook of quantitative science and technology research: the use of publication and patent statistics in studies of S&T systems[M]. Dordrecht: Springer, 2005. 35 Chang J, Boyd-Graber J, Gerrish S, et al. Reading tea leaves: how humans interpret topic models[C]// Proceedings of the 22nd International Conference on Neural Information Processing Systems. New York: ACM Press, 2009: 288-296. 36 Akella A P, Alhoori H, Kondamudi P R, et al. Early indicators of scientific impact: predicting citations with altmetrics[J]. Journal of Informetrics, 2021, 15(2): 101128. |
|
|
|