|
|
Network Analysis of Inter-Division in Funding Projects: Case Studies of AI Field in NSF Data |
Yang Jie1, Wang Yuefen1,2,3, Chen Bikun4, Hui Guangping1 |
1.School of Economics & Management, Nanjing University of Science & Technology, Nanjing 210094 2.Management School of Tianjin Normal University, Tianjin 300387 3.Institute for Big Data Science, Tianjin Normal University, Tianjin 300387 4.School of Social Science, Soochow University, Suzhou 215021 |
|
|
Abstract This study aims to explore the funding direction, influence, characters, and evolution of a crossing study from the perspective of division by analyzing the research fusion and trends of funding projects. A co-word network analysis is combined with interdisciplinary research methods to construct an analysis framework and a measurement principle with an aim to discover the development of the inner-division knowledge and the inter-division research trends from the dimensions of the inner-division compactness of co-word networks and the intersection of inter-division knowledge. The results show that, over time, as per the National Science Foundation (NSF) data, both the number of projects and the diversity of topics in the different divisions of the artificial intelligence (AI) field are increasing. Further, from the two dimensions, the degree of inner-division compactness keeps decreasing while the intersection of inter-division knowledge intensifies, and there exists an obvious polarization between them. Moreover, the intersecting content of NSF’s different divisions is concentrated in the topics with the same or similar theoretical methods, which indicates that it is easier to realize cross-integration for similar knowledge, and there exists some relationship between the inner-division compactness of co-word networks and the crossing and integration of inter-division knowledge.
|
Received: 22 July 2021
|
|
|
|
1 操秀英. 重磅! 自然科学基金委成立交叉科学部[EB/OL]. (2020-11-30) [2020-12-15]. http://www.nsfc.gov.cn/publish/portal0/tab434/info79287.htm. 2 朱蔚彤. 国家自然科学基金委员会资助学科交叉研究模式分析[J]. 中国科学基金, 2006, 20(3): 184-189. 3 Fontana M, Iori M, Montobbio F, et al. New and atypical combinations: an assessment of novelty and interdisciplinarity[J]. Research Policy, 2020, 49(7): 104063. 4 许海云, 尹春晓, 郭婷, 等. 学科交叉研究综述[J]. 图书情报工作, 2015, 59(5): 119-127. 5 张雪, 张志强. 学科交叉研究系统综述[J]. 图书情报工作, 2020, 64(14): 112-125. 6 Stirling A. A general framework for analysing diversity in science, technology and society[J]. Journal of the Royal Society Interface, 2007, 4(15): 707-719. 7 Rafols I, Meyer M. Diversity and network coherence as indicators of interdisciplinarity: case studies in bionanoscience[J]. Scientometrics, 2010, 82(2): 263-287. 8 Porter A L, Cohen A S, David Roessner J, et al. Measuring researcher interdisciplinarity[J]. Scientometrics, 2007, 72(1): 117-147. 9 Porter A L, Rafols I. Is science becoming more interdisciplinary? Measuring and mapping six research fields over time[J]. Scientometrics, 2009, 81(3): Article No.719. 10 张金柱, 韩涛, 王小梅. 利用参考文献的学科分类分析图书情报领域的学科交叉性[J]. 图书情报工作, 2013, 57(1): 108-111, 146. 11 许海云, 刘春江, 雷炳旭, 等. 学科交叉的测度、可视化研究及应用——一个情报学文献计量研究案例[J]. 图书情报工作, 2014, 58(12): 95-101. 12 徐庶睿, 卢超, 章成志. 术语引用视角下的学科交叉测度——以PLOS ONE上六个学科为例[J]. 情报学报, 2017, 36(8): 809-820. 13 Brink M, Hengeveld G M, Tobi H. Interdisciplinary measurement: a systematic review of the case of sustainability[J]. Ecological Indicators, 2020, 112: 106145. 14 章成志, 吴小兰. 跨学科研究综述[J]. 情报学报, 2017, 36(5): 523-535. 15 Wagner C S, Roessner J D, Bobb K, et al. Approaches to understanding and measuring interdisciplinary scientific research (IDR): a review of the literature[J]. Journal of Informetrics, 2011, 5(1): 14-26. 16 马瑞敏, 闫晓慧, 申楠. 学科交叉直接测度研究[J]. 情报学报, 2019, 38(7): 688-696. 17 许海云, 郭婷, 岳增慧, 等. 基于TI指标系列的情报学学科交叉主题研究[J]. 情报学报, 2015, 34(10): 1067-1078. 18 闵超, 孙建军. 学科交叉研究热点聚类分析——以国内图书情报学和新闻传播学为例[J]. 图书情报工作, 2014, 58(1): 109-116. 19 张斌. 共词网络的结构与演化: 概念与理论进展[J]. 情报杂志, 2014, 33(7): 103-109. 20 陈果, 胡昌平. 科研领域关键词网络的结构特征与启示——基于图情学科的实证研究[J]. 现代图书情报技术, 2014(7/8): 84-91. 21 王曰芬, 张露, 张洁逸. 产业领域核心专利识别与演化分析——以人工智能领域为例[J]. 情报科学, 2020, 38(12): 19-26. 22 Rose S, Engel D, Cramer N, et al. Automatic keyword extraction from individual documents[M]// Text Mining: Applications and Theory. New York: John Wiley & Sons, 2010: 1-20. |
|
|
|