|
|
Diffusion Features of Disruptive Technology from the Life Cycle Perspective |
Wang Chao1,2, Ma Ming3, Wang Haiyan4, Xia Dong5, Xu Haiyun1 |
1.Business School, Shandong University of Technology, Zibo 255000 2.Information Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014 3.Institute of Science and Technology for Development of Shandong, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014 4.Institute of Scientific and Technical Information of China, Beijing 100038 5.Chengdu Library and Information Center, Chinese Academy of Sciences, Chengdu 610041 |
|
|
Abstract The identification of proliferation features of disruptive technologies is greatly significant in identifying potentially disruptive technologies. Based on the technology diffusion theory proposed by E. M. Rogers, we construct a research framework for the diffusion of disruptive technological innovation from the life cycle perspective, and conduct research on the features of disruptive technological diffusion using bibliometric and altmetrics indicators. First, through a large-scale survey, we obtain the disruptive technology list in which all technologies are unanimously recognized by the government, industry, and academia. Next, using bibliometric and altmetrics methods, we explore the diffusion features of disruptive technological innovation from the perspective of the technology life cycle. Finally, five key diffusion features of disruptive technology are obtained, including the cycle, diffusion rate, diffusion hysteresis, diffusion disorder, and diffusion dominance. This study provides new insights for exploring the features and patterns of disruptive technological innovation and support the selection of potential disruptive technologies.
|
Received: 09 November 2021
|
|
|
|
1 科技部办公厅关于开展颠覆性技术研发方向建议征集工作的通知[EB/OL]. (2021-08-19) [2021-10-05]. http://www.most.gov.cn/xxgk/xinxifenlei/fdzdgknr/qtwj/qtwj2021/202108/t20210819_176486.html. 2 夏明, 邓向荣. 产业共性技术扩散中政府作用最优力度分析——基于变换的Bass模型[J]. 北京理工大学学报(社会科学版), 2019, 21(2): 78-86. 3 伍霞. 颠覆性技术扩散模型构建及影响趋势分析研究——以RFID技术为例[D]. 镇江: 江苏科技大学, 2018. 4 Rogers E M. Diffusion of innovations[M]. 5th ed. New York: Free Press, 2003. 5 Christensen C M, Bower J L. Customer power, strategic investment, and the failure of leading firms[J]. Strategic Management Journal, 1996, 17(3): 197-218. 6 Christensen C M. The innovator’s dilemma: when new technologies cause great firms to fail[M]. Boston: Harvard Business School Press, 1997. 7 Ganguly A, Nilchiani R, Farr J V. Defining a set of metrics to evaluate the potential disruptiveness of a technology[J]. Engineering Management Journal, 2010, 22(1): 34-44. 8 科技部关于举办全国颠覆性技术创新大赛的通知[EB/OL]. (2021-07-14) [2021-10-07]. http://www.most.gov.cn/xxgk/xinxifenlei/fdzdgknr/qtwj/qtwj2021/202107/t20210714_175842.html. 9 Walters J. How disruptive electricity technology could be revolutionary[R/OL]. (2020-02-28) [2021-10-08]. https://www.gov.uk/research-for-development-outputs/how-disruptive-electricity-technology-could-be-revolutionary. 10 Manyika J, Chui M, Bughin J, et al. Disruptive technologies: advances that will transform life, business, and the global economy[M]. San Francisco: McKinsey Global Institute, 2013. 11 Andrews S, Ayers S, Bakovic T, et al. Reinventing business through disruptive technologies: sector trends and investment opportunities for firms in emerging markets[R]. Washington, D.C.: International Finance Corporation, World Bank, 2019. 12 Anderson P, Tushman M L. Technological discontinuities and dominant designs: a cyclical model of technological change[J]. Administrative Science Quarterly, 1990, 35(4): 604. 13 许端阳, 徐峰. 产业共性技术的界定及选择方法研究——基于科技计划管理的视角[J]. 中国软科学, 2010(4): 73-79. 14 赵振元, 银路, 成红. 新兴技术对传统管理的挑战和特殊市场开拓的思路[J]. 中国软科学, 2004(7): 72-77. 15 高建, 魏平. 新兴技术的特性与企业的技术选择[J]. 科研管理, 2007, 28(1): 47-52. 16 Chen X L, Han T. Disruptive technology forecasting based on gartner hype cycle[C]// Proceedings of the 2019 IEEE Technology & Engineering Management Conference. IEEE: 1-6. 17 Nilchiani R, Edwards C M, Ganguly A. Introducing a tipping point measure in explaining disruptive technology[C]// Proceedings of the 2019 International Symposium on Systems Engineering. IEEE: 1-5. 18 Cheng Y, Huang L C, Ramlogan R, et al. Forecasting of potential impacts of disruptive technology in promising technological areas: Elaborating the SIRS epidemic model in RFID technology[J]. Technological Forecasting and Social Change, 2017, 117: 170-183. 19 傅家骥, 雷家骕, 程源. 技术经济学前沿问题[M]. 北京: 经济科学出版社, 2003. 20 李恒毅, 岳意定. 技术扩散视角下的创新网络演化研究[J]. 东南学术, 2014(1): 162-167. 21 贵淑婷, 彭爱东. 基于专利引文网络的技术扩散速度研究[J]. 情报理论与实践, 2016, 39(5): 40-45. 22 Drivas K, Economidou C. Is geographic nearness important for trading ideas? Evidence from the US[J]. The Journal of Technology Transfer, 2015, 40(4): 629-662. 23 黄鲁成, 王宁. 专利视角下的技术扩散研究综述[J]. 科学学与科学技术管理, 2011, 32(10): 27-34. 24 乔铮, 黄鲁成, 吴菲菲, 等. 跨领域视角的新技术扩散特征研究——以石墨烯技术为例[J]. 情报学报, 2015, 34(4): 339-351. 25 郑月龙, 杨柏, 王琳. 产业共性技术扩散行为演化及动力机制[J]. 中国科技论坛, 2019(5): 26-34, 67. 26 Yu Z H. Diffusion modes of generic technologies of equipment manufacturing industry chain[J]. Applied Mechanics and Materials, 2012, 152-154: 1679-1684. 27 李纪珍. 我国产业共性技术供给和扩散的发展历程[J]. 创新与创业管理, 2010(2): 32-60. 28 苏鑫, 赵越. 产业共性技术扩散三阶段模型构建与仿真研究[J]. 科技进步与对策, 2019, 36(12): 71-79. 29 马永红, 苏鑫, 赵越. 产业共性技术扩散的演化博弈分析[J]. 控制理论与应用, 2019, 36(1): 22-31. 30 张伟, 刘德志. 新兴技术的扩散模型研究[J]. 科技管理研究, 2009, 29(4): 42-43. 31 Yuan X D, Li X T. Mapping the technology diffusion of battery electric vehicle based on patent analysis: a perspective of global innovation systems[J]. Energy, 2021, 222: 119897. 32 罗晓梅, 王亢抗, 乔铮. 基于有效距离的新兴技术跨领域扩散模型[J]. 技术经济, 2019, 38(4): 10-14. 33 Nieto M, Lopéz F, Cruz F. Performance analysis of technology using the S curve model: the case of digital signal processing (DSP) technologies[J]. Technovation, 1998, 18(6/7): 439-457. 34 焦硕, 徐飞, 周鸿松. 中国新技术普及过程的特异性分析——关于罗杰斯创新扩散理论的一个补充[J]. 中国科技论坛, 2004(2): 119-122. 35 Timmers P. Building effective public R&D programs[C]// Proceedings of Portland International Conference on Management of Engineering and Technology: Book of Summaries. IEEE: 430 vol.1. 36 Turkenburg W C. The innovation chain: policies to promote energy innovations[M]. New York: The UN Publication, 2002. 37 McNamee L M, Walsh M J, Ledley F D. Timelines of translational science: from technology initiation to FDA approval[J]. PLoS One, 2017, 12(5): e0177371. 38 Nolte W L. Did I ever tell you about the whale?: or measuring technology maturity[M]. Charlotte: Information Age Publishing, 2008. 39 Grübler A. The rise and fall of infrastructures: dynamics of evolution and technological change in transport[M]. Heidelberg: Physica-Verlag, 1990. 40 Wilson C. Up-scaling, formative phases, and learning in the historical diffusion of energy technologies[J]. Energy Policy, 2012, 50: 81-94. 41 Leibowicz B D. Policy recommendations for a transition to sustainable mobility based on historical diffusion dynamics of transport systems[J]. Energy Policy, 2018, 119: 357-366. 42 国家重点支持的高新技术领域[EB/OL]. (2020-05-21) [2021-06-15]. http://xxgk.beihai.gov.cn/bhskxjsj/zcfgzl/zcfg_88776/201808/ t20180831_1812921.html. 43 王超, 武华维, 赵燕清, 等. 基于创新全过程的知识内容扩散强度分析模型研究[J]. 情报理论与实践, 2018, 41(10): 137-142, 65. 44 武华维, 王超, 许海云, 等. 知识耦合视角下区域科学—技术—产业协同创新水平的评价方法研究[J]. 情报理论与实践, 2020, 43(5): 91-98, 8. 45 Azer S A, Azer S. Top-cited articles in medical professionalism: a bibliometric analysis versus altmetric scores[J]. BMJ Open, 2019, 9(7): e029433. 46 王超, 马铭, 李思思, 等. Altmetrics视角下颠覆性技术的社会影响力探测研究[J]. 情报理论与实践, 2022, 45(1): 93-104. 47 Foster R N. Working the S-curve: assessing technological threats[J]. Research Management, 1986, 29(4): 17-20. 48 Majima H, Suzuki A. Identities for entropy change associated with the time-evolution of an open system[J]. Foundations of Physics, 2015, 45(8): 914-922. 49 Lin D M, Liu W B, Guo Y X, et al. Using technological entropy to identify technology life cycle[J]. Journal of Informetrics, 2021, 15(2): 101137. 50 Werker C. Innovation, market performance, and competition: lessons from a product life cycle model[J]. Technovation, 2003, 23(4): 281-290. |
|
|
|