|
|
Analyzing the Time-lag Effect in Scientific Research Within the Same Field at Home and Abroad: Focusing on Data Mining |
Tan Chunhui, Xiong Mengyuan |
School of Information Management, Central China Normal University, Wuhan 430079 |
|
|
Abstract There is a difference in the scientific research level seen between domestic and international academic systems of the same scientific field. By analyzing the time-lag effect in topics and number of publications of domestic and international core journal articles in the same field, horizontal comparison in the field can be performed and the level of scientific research development can be measured. To begin with, the method and procedure of measuring the topic-based and number-based time lag in articles from domestic and international core journals are proposed. Then, taking the field of data mining as an example, literature records of core journal articles included in the CNKI (China National Knowledge Infrastructure) and WoS (Web of Science) databases from 1996 to 2019 are collected. First, the LDA (latent Dirichlet allocation) model is used for topic extraction from the literature by time-slicing, and similarity is applied on the extracted topics to measure the topic-based time-lag effect, which helps to reveal the most significant lagging direction and period in the field of Data Mining. Second, the ARDL (auto-regressive distributed lag) model is used to model and analyze the time series, which is composed of the data on the number of annual publications of domestic and international journals. By using this model, the most significant lagging coefficient can be found to identify the corresponding number-based lagging direction and period. Results suggest that in the field of Data Mining, domestic research lags behind international research with a topic-based time-lag of 3 years, with 38.6% of domestic topics lagging behind. Domestic journals also lag behind international journals in terms of number of publications with a time lag of 5 years, but the lag coefficient turns out to be 1.431913. The results prove that the proposed measurement methods for time-lag effect in different academic systems are adaptable under most circumstances.
|
Received: 16 March 2020
|
|
|
|
1 耿兴国, 陈光, 傅恒志. 过热合金熔体的几种物性滞后效应[J]. 材料科学与工程, 2002, 20(4): 549-551. 2 Lee M, Choi M. Analysis on time-lag effect of research and development investment in the pharmaceutical industry in Korea[J]. Osong Public Health and Research Perspectives, 2015, 6(4): 241-248. 3 Hwang S, Shin J. Extending technological trajectories to latest technological changes by overcoming time lags[J]. Technological Forecasting and Social Change, 2019, 143: 142-153. 4 Zhang Y L, Cheng Z Y, He Q S. Time lag analysis of FDI spillover effect: evidence from the Belt and Road developing countries introducing China’s direct investment[J]. International Journal of Emerging Markets, 2019, 15(4): 629-650. 5 Sato M, Du J, Inoue Y, et al. Older adults’ physical activity and healthcare costs, 2003-2014[J]. American Journal of Preventive Medicine, 2020, 58(5): e141-e148. 6 倪渊. 基于滞后非径向超效率DEA的高校科研效率评价研究[J]. 管理评论, 2016, 28(11): 85-94. 7 吴丹丹, 席晓宇, 徐怀伏. 研发投入的滞后效应研究——基于医药制造业的分析[J]. 中国卫生事业管理, 2018, 35(11): 830-833, 861. 8 刘自强, 许海云, 岳丽欣, 等. 面向研究前沿预测的主题扩散演化滞后效应研究[J]. 情报学报, 2018, 37(10): 979-988. 9 董奋义, 齐冰. 基于产出滞后性的农业科技投入DEA效率研究[J]. 河南科学, 2018, 36(5): 799-806. 10 叶立国. 国内外系统科学研究差异的比较研究[J]. 自然辩证法通讯, 2012, 34(3): 25-30, 125. 11 张大伟, 胡月. 数字时代中外出版研究主题的时间序列比较研究[J]. 新闻大学, 2019(12): 105-117, 123. 12 占小红, 宋蕊, 徐冉冉. 基于共词分析的国内外中小学教材研究热点、主题与发展趋势[J]. 全球教育展望, 2019, 48(1): 113-128. 13 迟佳蕙, 李宝敏. 国内外深度学习研究主题热点及发展趋势——基于共词分析的可视化研究[J]. 基础教育, 2019, 16(1): 101-112. 14 邓明, 王良, 李亮, 等. 中外影像学期刊论文引文频次和研究主题差异比较[J]. 影像诊断与介入放射学, 2015, 24(2): 164-168. 15 赵蓉英, 余波. 中外近五年智库研究演进脉络与热点主题对比分析[J]. 情报科学, 2018, 36(11): 3-9, 16. 16 齐亚双, 祝娜, 翟羽佳. 基于DTM的国内外情报学研究主题热度演化对比研究[J]. 图书情报工作, 2016, 60(16): 99-109. 17 陈春阳, 廖远丽. 中外图书馆出版服务研究主题比较分析[J]. 图书情报工作, 2019, 63(12): 72-76. 18 马春晖, 张南, 周晓丽, 等. 基于Scopus和Scival的国内外高校食品科学研究现状分析[J]. 食品科学技术学报, 2016, 34(4): 54-60. 19 Yang S L, Wang F F. Visualizing information science: author direct citation analysis in China and around the world[J]. Journal of Informetrics, 2015, 9(1): 208-225. 20 魏娜, 王焕. 国内外志愿服务研究主题演进与热点比较研究——基于2008—2018年的数据分析[J]. 中国行政管理, 2019(11): 124-130. 21 Blei D M, Ng A Y, Jordan M I. Latent dirichlet allocation[J]. Journal of Machine Learning Research, 2001, 3: 601-608. 22 Wei X, Croft W B. LDA-based document models for Ad-hoc retrieval[C]// Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2006: 178-185. 23 姜婷婷, 肖卫东, 张翀, 等. 基于桑基图的时间序列文本可视化方法[J]. 计算机应用研究, 2016, 33(9): 2683-2687, 2692. 24 郑义, 秦炳涛. 能源消费、碳排放与经济增长的关系研究——基于中国(1970-2010年)ARDL模型的实证分析[J]. 科研管理, 2016, 37(8): 130-139. 25 曾繁荣. 基于面板ARDL模型的家庭债务对产出增长影响研究[J]. 金融发展评论, 2018(1): 134-147. 26 吴翔, 夏天. 基于ARDL模型的吉林省碳排放影响因素实证研究[J]. 生态经济, 2019, 35(7): 44-48. 27 Charemza W W, Deadman D F. New directions in econometric practice: general to specific modelling, cointegration and vector autoregression[M]. Cheltenham: Edward Elgar, 1992: 300-310. 28 Pesaran M H, Shin Y, Smith R J. Bounds testing approaches to the analysis of level relationships [J]. Journal of Applied Econometrics, 2001, 16(3): 289-326. 29 Dergiades T, Tsoulfidis L. Revisiting residential demand for electricity in Greece: new evidence from the ARDL approach to cointegration analysis[J]. Empirical Economics, 2011, 41(2): 511-531. 30 Sunde T. Foreign direct investment, exports and economic growth: ADRL and causality analysis for South Africa[J]. Research in International Business and Finance, 2017, 41: 434-444. |
|
|
|