|
|
The Research Tendencies of Medical Informatics and the Transformation toward Health Informatics since 2000 |
Xu Lulu1,2, Du Jian3, Ye Ying1 |
1.Jiangsu Key Laboratory of Data Engineering & Knowledge Service; School of Information Management, Nanjing University, Nanjing 210023 2.Nantong University Library, Nantong 226019 3.National Institute of Health Data Science, Peking University, Beijing 100191 |
|
|
Abstract This study uses the LDA thematic model at home and abroad, combined with the qualitative data of the International Medical Informatics Association (IMIA) Yearbook and quantitative data of the Web of Science and CNKI, to identify a research topic; subsequently, three clustering algorithms are employed to cluster this research, based on identification of the paper s topic model. The results show that, from 2000 to 2018, medical informatics was divided into two branches—bioinformatics and health informatics—which formed the “hard” and “soft” trends of medical informatics, respectively. The findings suggest that the health informatics side of medical informatics should receive attention, and the design of national policy should be strengthened.
|
Received: 08 March 2019
|
|
|
|
1 Greenes R A, Shortliffe E H. Medical informatics: An emerging academic discipline and institutional priority[J]. JAMA, 1990, 263(8): 1114-1120. 2 Eysenbach G. Recent advances: Consumer health informatics[J]. BMJ, 2000, 320(7251): 1713-1716. 3 Eysenbach G, Jadad A R. Evidence-based patient choice and consumer health informatics in the Internet age[J]. Journal of Medical Internet Research, 2001, 3(2): e19. 4 Hersh W R. Medical informatics: Improving health care through information[J]. JAMA, 2002, 288(16): 1955-1958. 5 Haux R. Medical informatics: Past, present, future[J]. International Journal of Medical Informatics, 2010, 79(9): 599-610. 6 Kim Y M, Delen D. Medical informatics research trend analysis: A text mining approach[J]. Health Informatics Journal, 2018, 24(4): 432-452. 7 Ravi D, Wong C, Deligianni F, et al. Deep learning for health informatics[J]. IEEE Journal of Biomedical and Health Informatics, 2017, 21(1): 4-21. 8 Fridsma D B. Health informatics: A required skill for 21st century clinicians[J]. BMJ, 2018, 362: k3043. 9 Abdulhay E. A special section on emerging trends in health informatics[J]. Journal of Medical Imaging and Health Informatics, 2018, 8(9): 1855-1856. 10 Shah G H, Rogers V N. Publishing on topics in public health informatics for a quarter century[J]. Journal of Public Health Management and Practice, 2019, 25(1): 27-29. 11 董建成. 医学信息学的现状与未来[J]. 中华医院管理杂志, 2004(4): 44-47. 12 徐一新, 应峻, 董建成. 医学信息学的发展[J]. 中国医院管理, 2006(3): 30-32. 13 崔雷, 陈东滨. 国外医学信息学科研热点的文献计量学分析[J]. 医学信息学杂志, 2007(2): 97-102. 14 代涛. 医学信息学的发展与思考[J]. 医学信息学杂志, 2011, 32(6): 2-16. 15 亢川博, 王伟, 张世玉, 等. 国内外医学信息学研究现状的可视化分析[J]. 中华医学图书情报杂志, 2016, 25(8): 24-30. 16 张志强, 范少萍, 陈秀娟. 面向精准医学知识发现的生物医学信息学发展[J]. 数据分析与知识发现, 2018, 2(1): 1-8. 17 张雪, 陈秀娟, 张志强. 近十年国际医学信息学发展趋势与热点研究——基于10种高影响力外文期刊的文献计量分析[J]. 现代情报, 2018, 38(12): 151-163. 18 闫慧, 余章馗, 姜怡婷. 国内外消费者健康信息学研究进展[J]. 图书情报工作, 2017, 61(6): 134-141. 19 朱庆华, 韩文婷, 吴琼, 等. 健康信息学研究: 起源、现状与未来[J]. 信息资源管理学报, 2018, 8(4): 4-14, 97. 20 池慧, 杜建. “十三五”医学情报服务的新趋势与新思考[J]. 数字图书馆论坛, 2016(11): 40-45. 21 Cohen R, Aviram I, Elhadad M, et al. Redundancy-aware topic modeling for patient record notes[J]. PLoS ONE, 2014, 9(2): e87555. 22 Rasiwasia N, Vasconcelos N. Latent Dirichlet allocation models for image classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2665-2679. 23 杨秀璋, 夏换, 于小民, 等. 基于特征词典构建和BIRCH算法的中文百科文本聚类研究[J]. 计算机时代, 2019(11): 23-27, 31. 24 Haux R. Health care and informatics: On IMIA’s opportunities and responsibilities in its 5th decade[J]. Yearbook of Medical Informatics, 2008, 17: 1-6. 25 Haux R. IMIA and its members: On balancing continuity and transition in biomedical and health informatics[J]. Yearbook of Medical Informatics, 2009, 18: 1-6. 26 陈芳. 基于个人电子健康档案的公共卫生服务信息系统的设计与实现[D]. 厦门: 厦门大学, 2011: 2-3. 27 汤学军, 董方杰, 张黎黎, 等. 我国医疗健康信息标准体系建设实践与思考[J]. 中国卫生信息管理杂志, 2016, 13(1): 31-36. |
|
|
|